McBits Revisited

ia.cr/2017/793

Tung Chou

Osaka University, Japan

Sender Receiver
$$\vec{m} + \vec{e} = \vec{r}$$
 \vec{m} (noisy channel) $\vec{r} \neq \vec{m}$

Sender Receiver
$$\vec{c}+\vec{e}=\vec{r}$$
 $\vec{c}=\vec{m}G$ ----- $\vec{c},\ \vec{e}=\mathsf{Decode}(\vec{r})$ (noisy channel)

<u>Sender</u>		Receiver
	$ec{r}$	
$\vec{r} = \vec{m}G + \vec{e}$		$\vec{c}, \ \vec{e} = Decode(\vec{r})$

Sender Receiver
$$\vec{r}$$

$$\vec{r} = \vec{m}G + \vec{e}$$
 ----- \vec{c} , $\vec{e} = \mathsf{Decode}(\vec{r})$

- McEliece (1978) using binary Goppa code remains secure.
- Niederreiter as the dual system.
- Confidence-inspiring post-quantum cryptosystems.

The old and the new McBits

The old McBits (2013)

- "McBits: Fast constant-time code-based cryptography"
 by Daniel J. Bernstein, Tung Chou, Peter Schwabe
- Bitslicing, non-conventional algorithms for decoding
- Using external parallelism
- High throughput, high latency

The old and the new McBits

The old McBits (2013)

- "McBits: Fast constant-time code-based cryptography"
 by Daniel J. Bernstein, Tung Chou, Peter Schwabe
- Bitslicing, non-conventional algorithms for decoding
- Using external parallelism
- High throughput, high latency

The new McBits (2017)

- Using internal parallelism
- High throughput, low latency

"Simulating \boldsymbol{w} copies of a circuit using bitwise logical operations."

"Simulating \boldsymbol{w} copies of a circuit using bitwise logical operations."

3

"Simulating \boldsymbol{w} copies of a circuit using bitwise logical operations."

McBits 2013: Inst. 1 Inst. w

"Simulating \boldsymbol{w} copies of a circuit using bitwise logical operations."

Speeds

reference	m	n	t	bytes	sec	perm	synd	key eq	root	all	arch
McBits 2013	13	6624	115	958482	252	23140	83127	102337	65050	444971	IB
Wichits 2015	13	6960	119	1046739	263	23020	83735	109805	66453	456292	IB
McBits 2017	12	0100	120	1257024	297	3783	62170	170576	53825	410132	IB
IVICBILS 2017	13	0192	120	1337024	291	3444	36076	127070	34491	275092	HW

Timings for decoding

key-generation	encryption	decryption	arch
1552717680	312135	492404	IB
1236054840	289152	343344	HW

Timings for key generation, encryption, and decryption

Decoder

Decoder

Decoder

- if c, swap (b_0, b_1)
- $d \leftarrow b_0 \oplus b_1; \ d \leftarrow cd; \ b_0 \leftarrow b_0 \oplus d; \ b_1 \leftarrow b_1 \oplus d;$

6

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

0	1	2	3
4	5	7 6	7
8	9	10	11
12	13	14	15

0	1	8	9
4	5	12	13
2	3	10	11
6	7	14	15

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

The Gao-Mateer Additive FFT

Multiplicative FFT

$$f(x) = f^{(0)}(x^2) + xf^{(1)}(x^2)$$

Additive FFT

$$f(x) = f^{(0)}(x^2 + x) + xf^{(1)}(x^2 + x)$$

Additive FFT (butterflies)

"Full" FFT

Additive FFT (butterflies)

"Full" FFT

Additive FFT (butterflies)

Low-degree FFT

	f_6	f_7
--	-------	-------

$$* = \alpha$$

- Additions: logical operations &, ^, \gg , \ll .
- Bitsliced multiplications.
- Small polynomial degree \Rightarrow relatively cheap.

Berlekamp-Massey algorithm

Picture from:

"Implementation of Berlekamp-Massey algorithm without inversion" by Xu Youzhi

Key generation

Public-key generation

• Constant-time Gaussian elimination in \mathbb{F}_2 .

Key generation

Public-key generation

• Constant-time Gaussian elimination in \mathbb{F}_2 .

Secret-key generation

- Goppa polynomial: degree-t, irreducible $g \in \mathbb{F}_{2^m}[x]$.
- Generating random element $\alpha \in \mathbb{F}_{2^{mt}}$.
- Derive **minimal polynomial** of α with Gaussian elimination in \mathbb{F}_{2^m} .

