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e McEliece (1978) using binary Goppa code remains secure.
e Niederreiter as the dual system.
e Confidence-inspiring post-quantum cryptosystems.



The old and the new McBits

The old McBits (2013)
e “McBits: Fast constant-time code-based cryptography
by Daniel J. Bernstein, Tung Chou, Peter Schwabe

e Bitslicing, non-conventional algorithms for decoding

”

e Using external parallelism
e High throughput, high latency
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The new McBits (2017)
e Using internal parallelism

e High throughput, low latency



Bitslicing
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Speeds

‘ reference ‘ m n t bytes  sec ‘ perm  synd key eq root all ‘ arch ‘
13 6624 115 958482 252 | 23140 83127 102337 65050 444971 | IB
13 6960 119 1046739 263 | 23020 83735 109805 66453 456292 | IB

3783 62170 170576 53825 410132 | IB
3444 36076 127070 34491 275092 | HW

—

McBits 2013

=

McBits 2017 | 13 8192 128 1357824 297

Timings for decoding

‘ key-generation encryption decryption ‘ arch ‘
1552717680 312135 492404 | 1B
1236054840 289152 343344 | HW

Timings for key generation, encryption, and decryption
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Decoder

Received word
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The Gao—Mateer Additive FFT

e Multiplicative FFT

f@) = fO@?) + e fD(?)

e Additive FFT

f(z) = f(o)(x2 + ) —|—:1:f(1)(a:2 + )
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Additive FFT (butterflies)
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Additive FFT (butterflies)

Low-degree FFT
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Additive FFT (radix conversions)
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Additive FFT (radix conversions)
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e Additions: logical operations &, *, >, <.

fs

* =

e Bitsliced multiplications.

e Small polynomial degree = relatively cheap.
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Berlekamp-Massey algorithm
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Picture from:

“Implementation of Berlekamp-Massey algorithm without inversion”
by Xu Youzhi
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Key generation

Public-key generation

e Constant-time Gaussian elimination in .

_
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Key generation

Public-key generation

e Constant-time Gaussian elimination in .

_

Secret-key generation

e

e Goppa polynomial: degree-t, irreducible g € Fom [z].

e Generating random element o € Fomt.

e Derive minimal polynomial of o with Gaussian elimination in Fom.
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