Sliding right into disaster -
Left-to-right sliding windows leak

Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange,
Christine van Vredendaal and Yuval Yarom

September 28th, 2017
Side-channel attacks on RSA

- Side-channel attacks on RSA: modular exponentiation
- Constant-time implementations cannot use sliding windows
- Common belief: sliding windows do not leak enough for key recovery
This work

- We show that right-to-left sliding window method does not leak enough
This work

- We show that right-to-left sliding window method does not leak enough
- We show that left-to-right sliding window method does leak enough
- Two methods to extract information from square and multiply sequence
- Demonstrated real-world applicability by attacking Libgcrypt
- We analyze the reasons why left-to-right leaks more than right-to-left
RSA
RSA signatures

Keygen:

- Public key \((e, N)\) where \(N = pq\) for primes \(p, q\)
- Secret key \((d, p, q)\) where \(ed \equiv 1 \mod \phi(N)\) and \(\phi(N) = (p - 1)(q - 1)\)
RSA signatures

Keygen:

- Public key \((e, N)\) where \(N = pq\) for primes \(p, q\)
- Secret key \((d, p, q)\) where \(ed \equiv 1 \mod \phi(N)\) and \(\phi(N) = (p - 1)(q - 1)\)

Sign and verify:

- Let \(H\) be a padded secure hash-function
- Signature: \(s\) of message \(m\): \(s = H(m)^d \mod N\)
- Verification: compute \(z = s^e \mod N\) and verify \(z \equiv H(m)\)
RSA signatures

Keygen:
- Public key \((e, N)\) where \(N = pq\) for primes \(p, q\)
- Secret key \((d, p, q)\) where \(ed \equiv 1 \mod \phi(N)\) and \(\phi(N) = (p - 1)(q - 1)\)

Sign and verify:
- Let \(H\) be a padded secure hash-function
- Signature: \(s\) of message \(m\): \(s = H(m)^d \mod N\)
- Verification: compute \(z = s^e \mod N\) and verify \(z ? = H(m)\)

CRT:
- Common optimization based on Chinese Remainder Theorem (CRT)
- Compute \(s_p \equiv H(m)^{dp} \mod p\) and \(s_q \equiv H(m)^{dq} \mod q\)
- Combine to \(s\) using CRT
Sliding-window method

- Implement modular exponentiation using sliding-windows
- Window size \(w \), sliding-window form \(d_{n-1} \ldots d_0 \) s.t. \(d = \sum_{i=0}^{n-1} d_i 2^i \) for odd \(0 \leq d_i \leq 2^w - 1 \)
- In general, compute \(b^d \mod p \) as follows:

1. Precompute small, odd powers of \(b \mod p \) (i.e. \(b \mod p \), \(b^3 \mod p \),..., \(b^{2^w-1} \mod p \)).
2. Set \(a = 1 \).
3. For \(i \leftarrow n-1 \) to 0:
 - \(a = a \cdot a \mod p \) (Square)
4. If \(d_i \neq 0 \):
 - \(a = a \cdot b^{d_i} \mod p \) (Multiply)
5. Return \(a \)

This leaks a Square and Multiply Sequence for sufficiently large \(w \), too many options to try.
Sliding-window method

- Implement modular exponentiation using sliding-windows.
- Window size w, sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$ for odd $0 \leq d_i \leq 2^w - 1$.
- In general, compute $b^d \mod p$ as follows:
 1. Precompute small, odd powers of $b \mod p$ (i.e. $b \mod p, b^3 \mod p, \ldots, b^{2^w-1} \mod p$).
Sliding-window method

- Implement modular exponentiation using sliding-windows
- Window size w, sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$ for odd $0 \leq d_i \leq 2^w - 1$
- In general, compute $b^d \mod p$ as follows:
 1. Precompute small, odd powers of $b \mod p$ (i.e. $b \mod p$, $b^3 \mod p$, ..., $b^{2^w-1} \mod p$).
 2. Set $a = 1$
 3. For $i \leftarrow n - 1$ to 0:
 4. $a = a \cdot a \mod p$ (Square)
 5. If $d_i \neq 0$:
 6. $a = a \cdot b^{d_i} \mod p$ (Multiply)
 7. Return a

This leaks a Square and Multiply Sequence For sufficiently large w, too many options to try

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window method

- Implement modular exponentiation using sliding-windows
- Window size w, sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
 for odd $0 \leq d_i \leq 2^w - 1$
- In general, compute $b^d \mod p$ as follows:
 1. Precompute small, odd powers of $b \mod p$
 (i.e. $b \mod p$, $b^3 \mod p$, $b^5 \mod p$, $b^{2w-1} \mod p$).
 2. Set $a = 1$
 3. For $i \leftarrow n - 1$ to 0:
 1. $a = a \cdot a \mod p$ (Square)
 2. If $d_i \neq 0$:
 1. $a = a \cdot b^{d_i} \mod p$ (Multiply)
 4. Return a

- This leaks a Square and Multiply Sequence
- For sufficiently large w, too many options to try
How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$

Example with $w = 4$, $d = 9059 = 10001101100011$
How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$

Example with $w = 4$, $d = 9059 = 10001101100011$

Right-to-left

Windowed form

Binary form 1 0 0 0 1 1 0 1 1 0 0 0 1 1
Sliding-window form

- How to compute sliding-window form \(d_{n-1} \ldots d_0 \) s.t. \(d = \sum_{i=0}^{n-1} d_i2^i \)
- Example with \(w = 4, \ d = 9059 = 10001101100011 \)
- Right-to-left

Windowed form

<table>
<thead>
<tr>
<th>Windowed form</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary form</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Right-to-left

<table>
<thead>
<tr>
<th>Windowed form</th>
<th>0 0 0 0 0 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary form</td>
<td>1 0 0 0 1 1</td>
</tr>
</tbody>
</table>

Sliding right into disaster - Left-to-right sliding windows leak
How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$

Example with $w = 4$, $d = 9059 = 10001101100011$

Right-to-left

Windowed form

| 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 3 |

Binary form

| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Right-to-left

| Windowed form | 0 0 0 1 0 0 0 11 0 0 0 0 0 3 |
| Binary form | 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 |

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Right-to-left

| Windowed form | 1 0 0 0 1 0 0 0 11 0 0 0 0 0 3 |
| Binary form | 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 |

- Leaking on average a fraction of $\frac{2}{w+1}$ bits

Sliding right into disaster - Left-to-right sliding windows leak
How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i2^i$

Example with $w = 4$, $d = 9059 = 10001101100011$

Left-to-right

Windowed form

<table>
<thead>
<tr>
<th>Binary form</th>
<th>Windowed form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0</td>
<td>1 1 0 1 1 0 0 0 0 1 1</td>
</tr>
</tbody>
</table>
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form

Binary form

1 0 0 0 1 1 0 1 1 0 0 0 0 1 1

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form 1

Binary form 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form

| 1 | 0 |

Binary form

| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form

<table>
<thead>
<tr>
<th>Windowed form</th>
<th>Binary form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>Left-to-right</td>
<td></td>
</tr>
</tbody>
</table>

\uparrow
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Binary form

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Sliding-window form

- How to compute sliding-window form \(d_{n-1} \ldots d_0 \) s.t. \(d = \sum_{i=0}^{n-1} d_i 2^i \)
- Example with \(w = 4 \), \(d = 9059 = 10001101100011 \)
- Left-to-right

Windowed form 1 0 0 0 0 0 0 0 13

Binary form 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1

Sliding right into disaster - Left-to-right sliding windows leak
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

Windowed form 1 0 0 0 0 0 0 0 13 1

Binary form 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1
Sliding-window form

- How to compute sliding-window form $d_{n-1} \ldots d_0$ s.t. $d = \sum_{i=0}^{n-1} d_i 2^i$
- Example with $w = 4$, $d = 9059 = 10001101100011$
- Left-to-right

<table>
<thead>
<tr>
<th>Windowed form</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>13</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary form</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sliding right into disaster - Left-to-right sliding windows leak
How to compute sliding-window form \(d_{n-1} \ldots d_0 \) s.t. \(d = \sum_{i=0}^{n-1} d_i2^i \)

Example with \(w = 4 \), \(d = 9059 = 10001101100011 \)

Left-to-right

- Windowed form

 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 1 | 0 | 0 | 0 | 0 | 3 |

 | Binary form

 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

Enables on-the-fly encoding and exponentiation

Not obvious how many bits are leaking...
Sliding Right versus Sliding Left Analysis
First observations

- Right-to-left: guaranteed $w - 1$ zero bits after non-zero bit
- Left-to-right: two non-zero bits can be as close as adjacent
- This allows for many more recovered bits from Square and Multiply sequence
- First method: deduce more known bits from 4 bit recovery rules
- Second method: uses knowledge not directly translatable to known bits
Applying bit recovery rules

- $d = 9059 \rightarrow S = smssssssssmsmsssssss$ with $w = 4$
- Convert $sm \rightarrow x$, $s \rightarrow x$

$$D_1 = _xxxxxxx_xxxxxx$$
Applying bit recovery rules

- $d = 9059 \rightarrow S = smssssssssmsmssssssm$ with $w = 4$
- Convert $sm \rightarrow x$, $s \rightarrow x$
 \[D_1 = xxxxxxxx_xxxxx \]
- **Rule 0: Multiplication bits** $x \rightarrow 1$
 \[D_2 = 1xxxxxx11xxxx1 \]
Applying bit recovery rules

- \(d = 9059 \rightarrow S = \text{smssssssssmsmsssssssm} \) with \(w = 4 \)
- Convert \(sm \rightarrow \underline{x}, s \rightarrow x \)

\[D_1 = \underline{x}xxxxx\underline{x}xxxxx \]

- Rule 0: Multiplication bits \(\underline{x} \rightarrow 1 \)

\[D_2 = 1\underline{x}xxxxx11\underline{x}xxx1 \]

- Rule 1: Trailing zeros \(\underline{1}x^i\underline{1}x^{w-i-1} \rightarrow \underline{1}x^i10^{w-i-1} \)

\[D_3 = 1\underline{x}xxxxx11000x1 \]
Applying bit recovery rules

- \(d = 9059 \rightarrow S = \text{smssssssmsmssssssm} \) with \(w = 4 \)
- Convert \(sm \rightarrow x \), \(s \rightarrow x \)

 \[
 D_1 = \underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}
 \]

- **Rule 0: Multiplication bits** \(x \rightarrow 1 \)

 \[
 D_2 = \underline{1}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}1
 \]

- **Rule 1: Trailing zeros** \(1x^i1x^{w-i-1} \rightarrow 1x^i10^{w-i-1} \)

 \[
 D_3 = \underline{1}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}\underline{x}10001
 \]

- **Rule 2: Leading one** \(xxx11 \rightarrow 1xx11 \)

 \[
 D_4 = \underline{1}\underline{x}\underline{x}1xx110001
 \]

Sliding right into disaster - Left-to-right sliding windows leak
Applying bit recovery rules

- \(d = 9059 \rightarrow S = \text{smssssssssmsmssssss} \) with \(w = 4 \)
- Convert \(sm \rightarrow x \), \(s \rightarrow x \)

\[
D_1 = \underline{x}xxxxxxx\underline{x}xxxxx
\]

- **Rule 0: Multiplication bits** \(\underline{x} \rightarrow 1 \)

\[
D_2 = \underline{1}xxxxxx11xxxx1
\]

- **Rule 1: Trailing zeros** \(1x^i1x^{w-i-1} \rightarrow 1x^i10^{w-i-1} \)

\[
D_3 = \underline{1}xxxxxx110000x1
\]

- **Rule 2: Leading one** \(xxx11 \rightarrow 1xx11 \)

\[
D_4 = \underline{1}xxx1xx110000x1
\]

- **Rule 3: Leading zeros** \(1x^i1x^{w-1}1 \rightarrow 10^i1x^{w-1}1 \)

\[
D_5 = \underline{1}0001xx110000x1
\]
Results of using bit recovery rules

- Conform Libgcrypt’s implementation of RSA-1024: \(n = 512, w = 4 \)

![Distribution of number of recovered bits per rule](image)

Sliding right into disaster - Left-to-right sliding windows leak
Results of using bit recovery rules

- Heninger-Shacham: branch and prune candidate solutions given partial information on RSA keys
- Requires $> 50\%$ known bits for efficient attack
- For $n = 512$, $w = 4$, we recover more than 50% of the bits in 32% of the time

Sliding right into disaster - Left-to-right sliding windows leak
Direct pruning from Square and Multiplies

- Bit recovery rules did not give enough known bits for $n = 1024, w = 5$ to succeed (conform RSA-2048)
- Method 2: directly branch and prune search tree of Heninger-Shacham from Square and Multiply sequence
Direct pruning from Square and Multiplies

- Method 1
- Square and Multiply Sequence
- Bit recovery rules
- Heninger-Shacham
- Branch and Prune
- Method 2

Recovery methods RSA Square and Multiply Sequence

Sliding right into disaster - Left-to-right sliding windows leak
Direct pruning from Square and Multiplies

- Summary of results for RSA-1024:

<table>
<thead>
<tr>
<th></th>
<th>Distribution of information recovered ($w = 4$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>right-to-left</td>
</tr>
<tr>
<td></td>
<td>left-to-right (known bits)</td>
</tr>
<tr>
<td></td>
<td>left-to-right (self-information)</td>
</tr>
</tbody>
</table>

- Direct pruning allows to recover RSA-2048 bit keys 13% of the time
Attacking Libgcrypt

- Demonstrated vulnerability in Libgcrypt (fixed in version 1.7.8)
- Flush+Reload cache-attack using Mastik toolkit

Libgcrypt Activity Trace

Sliding right into disaster - Left-to-right sliding windows leak
A lot more in the paper!

- Theoretical analysis of bit-recovery rules using Renewal Reward processes
- Theoretical analysis of direct pruning using self-information and collision entropy
- More experimental results and details
- Full version online: https://eprint.iacr.org/2017/627
Theoretical analysis of bit-recovery rules using Renewal Reward processes
Theoretical analysis of direct pruning using self-information and collision entropy
More experimental results and details
Full version online: https://eprint.iacr.org/2017/627

Thank you for your attention
Questions?