

Comparison of two Setups for Contacless Power Measurement for Side-Channel Analysis

Arthur Beckers, Benedikt Gierlichs, Josep Balasch and Ingrid Verbauwhede

Aim

- Goal: quality evaluation of antenna setup to measure instantaneous power consumption of contactless smartcards
- Comparison of two measurement setups:
 - * Traditional single antenna setup
 - * Novel balanced setup
- Main challenge is removing the carrier field from the side channel measurement

FFT

a) FFT single antenna setup without analog postprocessingb) FFT single antenna setup with analog post-processingc) FFT balanced setup with analog post-processing

1) Single Antenna setup

- Reader : Micropross smart card emulator
- Probe : wide band EM probe (Langer LF-R 400)
- Amplifier: Langer LNA 30 dB
- Analog processing: Envelope detector + 2MHz and 7MHz low pass filter

2) Balanced Setup

Measurement quality assessment

Signal to noise ratio (SNR) as metric for measurement quality * Signal = power consumption related to internal state SHA-256 * Noise = all the rest (mainly carrier field)

- Probe : two ferrite cores which allow for differential measurement of two identical smartcards.
- The rest of the components are identical to those used in the single antenna setup

Target

Contactless smartcard: BasicCard model ZC7.5 rev B

- Compliant with ISO 14443
- Uses a 13.56 MHz carrier field
- Contains 8 bit microcontroller
- Target operation is a software implementation of SHA-256

SNR results SHA-256

- SHA-256's internal state consists of 8 32 bit values (a, b, ..., f, g)
- Target an 8 bit chunk of one of the 32 bit state values

• $a_{j,k}$ = chunk k of state value a after round j

Target variable	SNR	SNR
HW(a _{0,1} ⊕ a _{1,1})	0.1683	0.1604
HW($a_{0,2} \oplus a_{1,2}$)	0.2723	0.2307
HW(a _{0,3} ⊕ a _{1,3})	0.1456	0.1432
HW($a_{0,4} \oplus a_{1,4}$)	0.1661	0.1415
HW(a _{1,1} ⊕ a _{2,1})	0.1174	0.0908
HW(a _{1,2} ⊕ a _{2,2})	0.1276	0.0969
HW(a _{1,3} ⊕ a _{2,3})	0.1306	0.1128
HW($a_{1,4} \oplus a_{2,4}$)	0.1336	0.0934

Conclusion

https://www.esat.kuleuven.be/cosic/

- Single antenna setup performs slightly better than balanced setup
- Results depend strongly on target and analog post-processing components
- More experiments are needed to make a definitive conclusion

