

Quantum Confinement in Security Elements

T. McGrath¹ (t.mcgrath@physics.org), R. Bernardo-Gavito¹, I.E. Bagci², C. Wang¹, B. Astbury¹, R.J. Young¹, U. Roedig² ¹Physics Department & ²School of Computing and Communications, Lancaster University US Air Force Office of Scientific Research award number FA9550-16-1-0276

1) Introduction to Quantum Confinement and Resonant Tunnelling Diodes

Quantum confinement occurs when a particle such as an electron is confined on the length scale of its wavelength. When an electron is strongly quantum confined, it can only exist at discrete energy levels.

Resonant Tunnelling Diodes (RTDs):

- One of the simplest quantum confinement structures -
- Consists of a matrix of atoms (left), defining a quantum well (right) —
- Central region is sufficiently small to form discrete energy levels (E₁) -
- Energy level is very sensitive to the atomic constituents of the well -

Quantum Base

2) **RTDs as Physically Unclonable Functions**

Physically Unclonable Functions (PUFs):

- Unique physical objects that cannot be recreated
- Translates an applied challenge to a unique response
- Can act as 'fingerprint' for attached circuitry or objects

3) RTDs for Quantum Random Numbers

Quantum Random Number Generators (QRNGs):

- Unpredictable random number generator
- Uses quantum processes that are entirely indeterminable
- Cannot predict output, even with knowing entire system

If **voltage** is controlled over RTD, we have a PUF:

- At voltage of peak (V_p) , the most electrons have energy E_1
- V_p position directly depends on energy level position E₁
- **E**₁ depends on **precise atomic arrangement** in the well \bullet
- **Replication** requires characterising and fabricating the device at **atomic-level resolution** (impossible)

Band structure of RTD PUF

IV characteristic of RTD PUF

If **current** is controlled over the RTD, we have a QRNG:

- At peak current I_p, incident electron can pass 1 of 2 ways:
 - 50% chance of tunnelling through the barriers
 - 50% chance of jumping over the barriers
- The path the electron takes is quantum non-deterministic, and so cannot be predicted, but can be easily measured

Ip

'೧'

'0'

IV characteristic of RTD RNG

11

4) RTDs in CMOS

Typical resonant tunnelling diodes use III/V semiconductor material (Left – InGaAs/AlAs)

This material can't be directly integrated into CMOS circuit fabrication processes

> Work is being done to produce RTDs in CMOS-compatible silicon (Right - Si/SiO₂)

