Realize your vision

T_SM

New secure scalar multiplication algorithm

CHES 2018 Rump Session

Samsung SDS Security Research Team

Copyright © 2018 Samsung SDS Co., Ltd. All rights reserved.

an and and and and a life and and and and

ant all all all sin a sin sin sin and

"Side Channel Attacks"

use implementation-specific characteristics to recover the secret in a target cryptosystem

Real World How to pick a ripe watermelon?	Crypto World How to pick a SECRET in Crypto systems?	
 Appearance Surface color: become dull from light tone Belly: turns from white to creamy white or yellow 	 Black-box model Uses only input/output information 	
 Sound [Side channel information] Make a hollow and low-pitched sound 	 Gray-box model [Side channel attacks] Uses side information such as time, power, EM etc 	

"More Powerful Attacks"

0.2

0.4

0.6

Number of points

0.8

 $\cdot 10^{4}$

Especially, single-trace attacks are more practical than multi-trace attacks against the Scalar Multiplication

Simple Power Attack(SPA) [`99] Collision Attack(CA) [`01] Key-Bit dependent Attack(KBA) [`17] A kind of higher-order DPA based on Exploits **the patterns of secret** Uses the leakage which occurs in the interrelationships between data scalar bit-dependent conditional a secret scalar bit check phase **branches** from a single-trace **Scalar multiplication Scalar multiplication** . D&A Always, Montgomery, . All method with scalar bit **Scalar multiplication** Joye's Add, Coron's alg. check phase . Binary method . M-ary, Sliding Window, NAF, Moller alg. correlation Power consumption Time (b) Classification according to ham-(a) Classification according to ham-

implementation)

ming weight of k_i (in case of software

ming distance between k_i and k_{i+1} (in

case of hardware implementation)

"Scalar Multiplication is the Main operation of ECDSA"

ECDSA* has been used in various protocols, browsers and crypto libraries. **However, there are many attack methods** (**Browser & OS**: Firefox, Safari, IE, Chrome, Opera, Android, iOS/ **Library**: OpenSSL, boring SSL, GnuTLS, BC, Botan / **Other**: FIDO, Blockchain)

Signature generation phase

- Secret *a* & message *m* & base point *G*
- Choose a **random** integer **k** with 1 < k < n

 $R = \underbrace{k \cdot G}_{k - 1} = (x, y)$ $s = k^{-1}(m + ax) \mod n$ Sign = (m, R, s)

Signature verification phase

• $Q = a \cdot G$

 $u_1 = s^{-1} \cdot m \mod n$ $u_2 = s^{-1} \cdot x \mod n$ $u_1 \cdot \mathbf{G} + u_2 \cdot \mathbf{Q} \stackrel{?}{=} \mathbf{R}$

Main Scalar Multiplication methods

Method	SPA	CA	KBA
D&A Always [`99]	Secure	Insecure	Insecure
Montgomery [`02]	Secure	Insecure	Insecure
Joye's Add [`07]	Secure	Insecure	Insecure
Coron's Alg. [`99]	Secure	Insecure	Insecure
Moller window [`01]	Secure	Insecure	Insecure
Width-w NAF [`03]	Secure	Insecure	Insecure
mLSB-set comb [`14]	Secure	Insecure	Insecure
Ours (T_SM) [`18]	Secure	Secure	Secure

* ECDSA: Elliptic Curve Digital Signature Algorithm [NIST FIPS 186-4]

[•] The first and unique countermeasure

SDS Scalar Multiplication method (**T_SM**) counteracts **the powerful side channel attacks** . T_SM: Sequence Subset-based Scalar Multiplication method

- Experimental Security Analysis was completed with Kookmin Univ.
- 3rd party Security Evaluation finished (ISPEC 2018)
- Need only point addition operations (without point doubling operations)
- Use the same size of secret parameter (with some public parameters)
- Chosen scalar multiplication : EdDSA*, FIPS Validation

SAMSUNG SDS

www.samsungsds.com Copyright © 2018 Samsung SDS Co., Ltd. All rights reserved.