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How to Protect Implementations?

Side Channel Contermeasures:

Private Circuits

Boolean & Polynomial
Masking

Threshold Implementations

Fault Injection Countermeasures

Redundancy in time and
space

Error detection

Infective computation

Combined Countermeasures

Private Circuits II [IPSW06],

ParTI [SMG16],

CAPA [RMB+17].
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Introduction & Motivation

Shamir’s Secret Sharing [Sha79]

1 F (x) = f0 + f1x + . . .+ fdx
d ,

2 Evaluating F (x) for n nonzero public points (α0, . . . , αn−1),

3 Secret shares of f0 is : F = (F (α0), . . . ,F (αn−1)) or
F = (F0, . . . ,Fn−1) .
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Figure: Shamir’s Secret Sharing.
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Introduction & Motivation

The Secret Reconstruction:

F (x) = f0 + f1x + f2x
2 ⇐⇒ {F0,F1,F2}
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Introduction & Motivation

The Secret Reconstruction:

F (x) = f0 + f1x + f2x
2 + f3x

3 ⇐⇒ {F0,F1,F2,F3} s.t. f3 = 0.
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Introduction & Motivation

The Secret Reconstruction:

{F0,F1,F2,F3} =⇒ f3 = 0.

F0 F1 F2 F3

F0 F1 F2 F3

E

Error Detection:

The Effect of of FI: {F0,F1,F2,F3} =⇒ f3 6= 0.

{F0, . . . ,Fn−1} =⇒ fd+1 = . . . = fn−1 = 0.

Error detection terms: fd+1, fd+2, . . . , fn−1.
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Introduction & Motivation

SMC Operations

Secret States:

Shares of f0 as (Fi )0≤i<n and shares of g0 as (Gi )0≤i<n.
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Addition of two Shares:

[Fi ⊕ Gi ]0≤i<n

Affine transformation of a secret L(f0).

Efficient squaring operation f 2
k

0 .
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Introduction & Motivation

Multiplication of Two Secrets [GRR98]

Computation

P1 P2 P3

F0 G0 F1 G1 F2 G2

H0

⊗

H1

⊗

H2

⊗

Randomization

Q0 Q1 Q2

Q0 Q1 Q2
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Introduction & Motivation

Multiplication of Two Secrets Under FA

Computation

Randomization

P1 P2 P3
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⊗

E
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Error Preserving SMC

How to Protect Implementations?

Error Detection Only:

deg(Output) > d .

Fault Detection Without Leaking Information:

{F0, . . . ,Fn−1}  
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Error Preserving SMC

How to Protect Implementations?

Error-Preserving Computation.
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Error Preserving SMC

How to Protect Implementations?

Infective Computation.
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Error Preserving SMC

Secret States with n > 2d + ε

Shares of f0 as (Fi )0≤i<n and shares of g0 as (Gi )0≤i<n.

Error detection terms: (fi , gi )d<i<n & (hj)2d<j<n.

P1 P2 P3 P4

F0 G0 F1 G1 F2 G2 F3 G3

⊗

H0

⊗

H1

⊗

H2

⊗

H3

Q0 Q1 Q2 Q3

Q0 Q1 Q2 Q3
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Error Preserving SMC

Propogation of Error Detection Terms

1 The update of Qi and the utilization of error detection terms:

Qi (αj)← Qi (αj)⊕ Ei,j for j = 0, . . . , n − 1.

Ei,j ← A share of error detection term of H or F ⊕ G

2 Fault propagation within Qi .

Qi ←
n−1∑
j=0

λ0i Qj ,i =


Qi ⊕ hn−i−1 if 0 ≤ i < ε

Qi ⊕ gn−i−1 ⊕ fn−i−1 if ε ≤ i < ε+ d

Qi if ε+ d ≤ i < n
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Security and Performance

Security in Probing Model

t-SNI Security [CGPZ16]:

The standard way of proving the security against probing attacks.

t-SNInd Security:

[t probes & O] should be simulatable by I .

∗ O with t + |O| ≤ d and |I | ≤ t.

∗ d shares are uniformly distributed.

→ t probes brings no information to the adversary.
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Security and Performance

Security in Additive Fault Model

Error Propagation:

Propagationε := Pr [deg(Ouput) > d | deg(Input) > d ].

Propagationε(Affine, Sqr) = 1.

Propagationε(Add, EPMult) ≈ 1.
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Security and Performance

The Cost of an EPMult

Table: Number of operations in Gennaro et al. [GRR98] and EPMult.

[GRR98] EPMult
Overhead

step 1 step 2 step 3 step 1 step 2 step 3

Mul. n n2d n2 n n2d + n(ε+ d) n2 n(ε+ d)

Add. - n2d (n − 1)n - n2d + n(ε+ 2d) (n − 1)n n(ε+ 2d)

Rand. - nd - - nd - -

Calculation of Ei ,j .
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Application to AES

Exp254

Sbox(x) = τA ◦ Exp254(x) where Exp254(x) requires:

4 EPMult, 3 Sqrk , and 2 RefreshM.

Exp254

Probes

Input

Output

E

E

Propagation(Exp254) ≈ 1− 2−12
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Conclusion

The New Multiplication Engine

Information about the fault remains as a part of the shares.

The error propagates through the algebraic operations.

Delay any error detection as late as the final recombination
step.

The Fault Detection and Recombination Gate

For both fault detection and reconstruction.

Infective Computation.
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Conclusion

Security properties

ISW probing model.

t-SNI security of the scheme [RP12].

Fault detection of our scheme is examined using the notion of
Propagation.

A proof-of-concept C implementation AES-128

Ultra-low power architecture, the ARM Cortex M0+ core

full leakage analysis including higher order moments,

fully constant execution flow with constant memory accesses.
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Conclusion

The code has been made publicly available at
https://github.com/vernamlab/Robust-AES.

Thank you!
okan.seker@uni-luebeck.de

its.uni-luebeck.de vernam.wpi.edu
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Conclusion

Recombination Operation

P1

F1

Q1

P2

F2

Q2

P3

F3

Q3

P4

F4

Q4

r r r r

Q1 Q2 Q3 Q4
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