Key Extraction Using Thermal Laser Stimulation: A Case Study on Xilinx Ultrascale FPGAs

September 10th, 2018 **CHES 2018**

Heiko Lohrke¹, Shahin Tajik^{1,2}, Thilo Krachenfels¹, Christian Boit¹, and Jean-Pierre Seifert¹ ¹Technische Universität Berlin, ²University of Florida

CHES 2018

Case Study: Key Extraction from BBRAM

NVM 1

Thermal Laser Stimulation (TLS)

- $\bullet\,$ The chip is scanned with a 1.3 $\mu{\rm m}\,$ laser beam from the backside
- The current changes in response to La the local thermal stimulations
- Measured current is monitored by a current amplifier >> a proportional analog voltage is generated
- Analog voltage is fed into image acquisition hardware while scanning the laser

SRAM readout using TLS

- Thermal stimulation leads to thermal gradient at the source/drain of the transistors
- Different materials lead to Seebeck voltage generation
- Seebeck voltage alters gate voltage of non-conducting transistor -> increased leakage current
- Which parts of the cell are sensitive depends on cell logical state

SRAM readout using TLS

- Thermal stimulation leads to thermal gradient at the source/drain of the transistors
- Different materials lead to Seebeck voltage generation
- Seebeck voltage alters gate voltage of non-conducting transistor -> increased leakage current
- Which parts of the cell are sensitive depends on cell logical state

SRAM readout using TLS

- Thermal stimulation leads to thermal gradient at the source/drain of the transistors
- Different materials lead to Seebeck voltage generation
- Seebeck voltage alters gate voltage of non-conducting transistor -> increased leakage current
- Which parts of the cell are sensitive depends on cell logical state

CHES 2018

- Device under Test (DUT): Avnet Kintex
 UltraScale Development Board
 - Chip's technology: 20 nm
- No chip preparation (e.g., depackaging, silicon polishing, etc.) required

- Device under Test (DUT): Avnet Kintex
 UltraScale Development Board
 - Chip's technology: 20 nm
- No chip preparation (e.g., depackaging, silicon polishing, etc.) required
- Optical Setup: Hamamatsu PHEMOS-1000
 - Laser wavelength: 1.3 μ m
 - Laser spot size: approximately 1 μ m

Localizing the Configuration Logic

Xilinx Kintex UltraScale in flip chip package

Localizing the Configuration Logic

Xilinx Kintex UltraScale in flip chip package

CHES 2018

Image acquisition with a laser scanning microscope

Localizing the Configuration Logic

Configuration Logic

Localizing BBRAM using Laser Stimulation

Localizing BBRAM using Laser Stimulation

Laser Stimulation of configuration area and measuring the current on VBATT when BBRAM key is set

FPGA is powered off in all experiments!

Localizing BBRAM using Laser Stimulation

Laser Stimulation of configuration area and measuring the current on VBATT when BBRAM key is not set

FPGA is powered off in all experiments!

Localizing the key bits in BBRAM by TLS (1)

Set 255 bits to "0" and one bit to "1". Shifting the bit "1" eight times by one bit

Localizing the key bits in BBRAM by TLS (2)

Set all 256 bits to "1" and reset all bits to "0" again.

Automatic Key Recovery

Target image containing the key

Reference image of the cleared BBRAM

Automatic Key Recovery

0xd781b86f274630b561f39c9736f512eb0adf714f0d5c836c7a76ff627aca4923

Conclusion

- The required effort to develop the attack is shown to be less than 7 hours.
- The lower cost and higher availability of TLS in comparison to other optical attacks makes this technique even more threatening.
- The stored key in the BBRAM of the FPGA can be extracted when the FPGA is disconnected from power >> conventional side-channel countermeasures are incapable of preventing such an attack.

Countermeasure: Adding Noise

• Countermeasure Requirements:

- Preventing the attack, even when the FPGA is turned off
- state for a long time.
- Realizable by standard processes

- Not draining the backup battery excessively, so that the device can be in its powered-off

Countermeasure: Adding Noise

• Countermeasure Requirements:

- Preventing the attack, even when the FPGA is turned off
- state for a long time.
- Realizable by standard processes

CHES 2018

- Not draining the backup battery excessively, so that the device can be in its powered-off

Countermeasure Results

No Countermeasure

No Filter

Gaussian Filter

CHES 2018

$I_{pp} = 300 \ nA$

 $I_{pp} = 400 nA$

