
CHES 2018 | Amsterdam 10.09.2018

Stealthy Opaque Predicates in Hardware -
Obfuscating Constant Expressions at Negligible Overhead

Max Hoffmann, Christof Paar

Ruhr University Bochum, Horst-Görtz Institute for IT-Security, Germany

2Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Obfuscation

Source: www.constructionknowledge.net

3Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Why Obfuscation?

High-level
Description

Finished
Product

“easy”

“not that easy”

4Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Why Obfuscation?

High-level
Description

Finished
Product

“easy”

“not that easy”

aes.c

aes.vhd

5Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Why Obfuscation?

High-level
Description

Finished
Product

“easy”

“not that easy”

01010100101
01000100101
01110101010
01101010010

aes.c

aes.vhd

6Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Why Obfuscation?

High-level
Description

Finished
Product

“easy”

“insanely difficult”

Obfuscation

7Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• One target in software is control flow obfuscation.

Software Obfuscation

8Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• One target in software is control flow obfuscation.

Software Obfuscation

9Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Opaque Predicates are used as a basic building block.

Software Obfuscation

10Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Opaque Predicates are used as a basic building block.

• An opaque predicate:
– is an expression
– looks like having a dynamic value
– evaluates to a constant, known value

Software Obfuscation

Example:
(x * (x + 1)) % 2 == 0

11Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Opaque Predicates are used as a basic building block.

• An opaque predicate:
– is an expression
– looks like having a dynamic value
– evaluates to a constant, known value

• Meant to harden against static analysis.

Software Obfuscation

• Static Analysis: analysis performed solely on a static data, e.g., a binary.

• Dynamic Analysis: analysis performed during operation, e.g., while
executing a binary.

Example:
(x * (x + 1)) % 2 == 0

12Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Control flow graph of a
static analyzer:

Example: Software Opaque Predicates

if ((x * (x + 1)) % 2 == 0):
foo()

else
bar()

…

check (x*(x+1))%2

foo() bar()

=0 ≠0

• “True” control flow graph:

…

foo()

13Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

A Software Obfuscation Technique in Hardware?

• How can a software obfuscation technique help in hardware?

• Obfuscation should harden against reverse engineering.

14Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

A Software Obfuscation Technique in Hardware?

• How can a software obfuscation technique help in hardware?

• Obfuscation should harden against reverse engineering.

• Reverse engineers rarely analyze an entire design.

• Mostly: small parts of a design.

15Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

A Software Obfuscation Technique in Hardware?

• How can a software obfuscation technique help in hardware?

• Obfuscation should harden against reverse engineering.

• Reverse engineers rarely analyze an entire design.

• Mostly: small parts of a design.

• Goal: hide as much information as possible.
 reduces starting points for reverse engineers.
makes understanding of any component harder.

16Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Example: Hardware Reversing

if a = "0110" then
output <= ‘1’;

end if;

if a = b then
output <= ‘1’;

end if;
vs.

17Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Use OPs to hide information introduced by constant signals.

Example: Hardware Reversing

if a = "0110" then
output <= ‘1’;

end if;

if a = b then
output <= ‘1’;

end if;
vs.

18Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

PREVIOUS WORK

19Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Only one prior work on opaque predicates.

• Sergeichik et al. presented LFSR-based OPs in 2014 [1].

Translation to Hardware

[1] Sergeichik and Ivaniuk. "Implementation of opaque predicates for fpga designs hardware obfuscation." (JICMS, 2014).

1 0 11 0 1 …0

<feedback logic>

OR 1

20Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Problem: Easy to detect, uncommon structure

• Removal via static analysis
demonstrated in [1].

Stealthiness

1 0 11 0 1 …0

<feedback logic>

OR 1

[1] Wallat, Fyrbiak, Schlögel, and Paar. “A Look at the Dark Side of Hardware Reverse Engineering – A Case Study” (IVSW, 2017)

21Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Problem: Easy to detect, uncommon structure

• Removal via static analysis
demonstrated in [1].

• Desired Metric: “Stealthiness“
– Impossible (?) to measure
– Human factor plays a role
– Different in hardware and software

Stealthiness

1 0 11 0 1 …0

<feedback logic>

OR 1

[1] Wallat, Fyrbiak, Schlögel, and Paar. “A Look at the Dark Side of Hardware Reverse Engineering – A Case Study” (IVSW, 2017)

22Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

OPAQUE

PREDICATES IN

HARDWARE

23Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Stealthiness: use common structures.

• Try to use existing circuitry.

Hardware OPs – Idea

24Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Stealthiness: use common structures.

• Try to use existing circuitry.

• Observation:
– Signals are changing constantly.
– A signal’s value is only important while evaluated.

Hardware OPs – Idea

25Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Stealthiness: use common structures.

• Try to use existing circuitry.

• Observation:
– Signals are changing constantly.
– A signal’s value is only important while evaluated.

→ Use an existing signal which
1. has the required state whenever we need it
2. switches “randomly” when not needed.

Hardware OPs – Idea

26Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Example: Hardware OPs

27Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Constant value required in Work1, Work2, and Work3.

• Multiple options to use the state of an FSM as an OP.

Example: Hardware OPs

28Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Constant value required in Work1, Work2, and Work3.

• Multiple options to use the state of an FSM as an OP.

Example: Hardware OPs

29Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Constant value required in Work1, Work2, and Work3.

• Multiple options to use the state of an FSM as an OP.

Example: Hardware OPs

30Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Example:
– Constant 11010002 to be obfuscated.
– 5-bit FSM passes 3 states during the processing period.

Hardware OPs

31Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Hardware OPs

• 1st State:

1 0 1 0 0

1 1 0 1 0 0 0

32Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Hardware OPs

• 2nd State:

1 1 0 0 0

1 1 0 1 0 0 0

33Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Hardware OPs

• 3rd State:

1 1 1 0 0

1 1 0 1 0 0 0

34Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Hardware OPs

• 4th State:

0 1 1 0 0

0 0 0 0 0 0 0

35Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Very stealthy: existing FSMs are used.

• Zero additional gates (in theory…)

Hardware OPs

36Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Very stealthy: existing FSMs are used.

• Zero additional gates (in theory…)

• Applicable to nearly all designs.

• Considerably increases reversing effort:
Reversing of control- and data-path required for identification of constants.

Hardware OPs

37Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Very stealthy: existing FSMs are used.

• Zero additional gates (in theory…)

• Applicable to nearly all designs.

• Considerably increases reversing effort:
Reversing of control- and data-path required for identification of constants.

• Applicable to ASICs and FPGAs.

• Forces a reverse engineer to apply dynamic analysis.

Hardware OPs

38Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• If no suitable FSM available, add a new FSM-like module.
– Make it reset outside of the processing period.
– Make it stabilize in a known state after some cycles.
– Generate OP value from stable state.

• Still stealthy (FSMs are common).

• Stabilizing FSMs are also common (DONE state).

Hardware OPs

39Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

CASE STUDIES

40Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Scenario

41Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Scenario

42Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Results

Platform: XILINX Artix-7 35T FPGA
Legend:

Unobfuscated: no opaque predicates were used
Strategy 1: opaque predicate from existing circuitry
Strategy 2: new circuitry for the opaque predicate

43Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

APPLICATION:
WATERMARKING

44Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Watermarking

[1] Schmid, Moritz, and Ziener, Daniel, and Teich, Jurgen. "Netlist-level IP protection by watermarking for LUT-based FPGAs." (FPT 2008)

• A watermark enables identification of IP-
theft.

• A vendor can inspect products for
presence of his watermark.

• Schmid et al. proposed a watermarking
scheme for FPGAs which implements a
watermark into LUT configurations [1].

45Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• A LUT is configured by defining it’s output values.

• Example:

• These configurations can be read from the bitstream of an FPGA.

FPGA LUT Configuration

46Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

• Idea: fix some inputs to GND.

Watermarking by Schmid et al.

47Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Watermarking by Schmid et al.

• Idea: fix some inputs to GND.

• Configuration bits for other cases become effectively unused.

48Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Watermarking by Schmid et al.

• Idea: fix some inputs to GND.

• Configuration bits for other cases become effectively unused.

• Embed watermark there.

49Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Applying OPs

• Netlist-level attacker was included in attacker model.

• Problem: Tracing GND to LUTs  detected  easy to remove the watermark.

50Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Applying OPs

• Netlist-level attacker was included in attacker model.

• Problem: Tracing GND to LUTs  detected  easy to remove the watermark.

• Solution: Use our OPs instead of GND.

51Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

CONCLUSION

52Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

Conclusion

• Novel technique for opaque predicates in hardware (ASICs + FPGAs).

• Strong technique (discussion in the paper).

• Instantiation strategies:
– Existing circuitry.
– Additional circuitry.

• Practical evaluation.

• Demonstrate potential to mitigate existing attacks.

CHES 2018 | Amsterdam

Thank You For Your Attention!
Any Questions?

10.09.2018

