It
th

i

5
!‘.o ” Wy

i

et

"y

LR Nl\u
: "

il

it

Stealthy Opaque Predicates in Hardware -
Obfuscating Constant Expressions at Negligible Overhead

Max Hoffmann, Christof Paar

N
[
Ruhr University Bochum, Horst-Gortz Institute for IT-Security, Germany h g 1

Horst Gortz Institut B
far IT-Sicherheit B




.~

l\\\ / A 4%.._ AR

i

Obfuscation

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Why Obfuscation?

l(easy”
High-level Finished
Description Product

"

“not that easy”

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Why Obfuscation?

((easy”

aes.Cc m

High-level Finished
Description Product
e v
7 “not that easy”

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Why Obfuscation?

daes.C

aes.vhd

((easy”
High-level
Description

4

Finished
Product

01010100101
01000100101
01110101010
01101010010

4

N

“not that easy”

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018




Why Obfuscation?

Obfuscation ) .,
easy

High-level Finished
Description Product

"

“insanely difficult”

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Software Obfuscation

* One target in software is control flow obfuscation.

|||||

F—LIJ;%
él“f

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Software Obfuscation

* One target in software is control flow obfuscation.

] T
li| =
Y e =Erj;‘§
l T &=——
— =—zﬁﬂ
o e |= I
| I irl g

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Software Obfuscation

* Opaque Predicates are used as a basic building block.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Software Obfuscation

* Opaque Predicates are used as a basic building block.

* An opaque predicate:
— IS an expression
. . . Example;
— looks like having a dynamic value (X * (x + 1)) % 2 ==
— evaluates to a constant, known value

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Software Obfuscation

* Opaque Predicates are used as a basic building block.

* An opaque predicate:

— IS an expression
— looks like having a dynamic value (X * (x + 1)) % 2
— evaluates to a constant, known value

Example;

%)

* Meant to harden against static analysis.

Static Analysis: analysis performed solely on a static data, e.g., a binary.

Dynamic Analysis: analysis performed during operation, e.g., while
executing a binary.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

11



Example: Software Opaque Predicates E

if ((x * (x +1)) % 2 ==0):
foo()

else
bar()

* Control flow graph of a * “True” control flow graph:
static analyzer:

check (x*(x+1))%2

=0 #0

foo()

foo() bar()

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



A Software Obfuscation Technique in Hardware?
« How can a software obfuscation technique help in hardware?

« Obfuscation should harden against reverse engineering.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

13



A Software Obfuscation Technique in Hardware?

How can a software obfuscation technique help in hardware?

Obfuscation should harden against reverse engineering.

Reverse engineers rarely analyze an entire design.

Mostly: small parts of a design.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

14



A Software Obfuscation Technique in Hardware?
« How can a software obfuscation technique help in hardware?
« Obfuscation should harden against reverse engineering.
* Reverse engineers rarely analyze an entire design.
* Mostly: small parts of a design.

* Goal: hide as much information as possible.
—> reduces starting points for reverse engineers.
- makes understanding of any component harder.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

15



Example: Hardware Reversing

if a = "0110" then
output <= 1°;
end if;

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

aq

if a = b then
output <= 1°;
end if;

b[) aj bl an bg

16



Example: Hardware Reversing

if a = "9e110" then if a = b then

output <= ‘1°; VS. output <= 1°;

end if; end if;

a
ATNNA
D A A A A

SRENANE

agp bg ay b, ag b as b4

- Use OPs to hide information introduced by constant signals.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

17



PREVIOUS WORK

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

18



Translation to Hardware

* Only one prior work on opague predicates.

« Sergeichik et al. presented LFSR-based OPs in 2014 [1].

<feedback logic>

1

0

1

1

%)

A

OR

— 1

[1] Sergeichik and Ivaniuk. "Implementation of opaque predicates for fpga designs hardware obfuscation.” (JICMS, 2014).

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

19



Stealthiness

Problem: Easy to detect, uncommon structure

Removal via static analysis
demonstrated in [1].

[<feedback logic>

11]0|11]1|0|1]09

.
.
| .

AAAA

ORI~ 1

[1] Wallat, Fyrbiak, Schldgel, and Paar. “A Look at the Dark Side of Hardware Reverse Engineering — A Case Study” (IVSW, 2017)

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 20



Stealthiness

Problem: Easy to detect, uncommon structure

Removal via static analysis
demonstrated in [1].

[<feedback logic>

11]0|11]1|0|1]09

.
.
| .

AAAA

ORI~ 1

Desired Metric: “Stealthiness”
Impossible (?) to measure
Human factor plays a role
Different in hardware and software

[1] Wallat, Fyrbiak, Schldgel, and Paar. “A Look at the Dark Side of Hardware Reverse Engineering — A Case Study” (IVSW, 2017)

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 21



OPAQUE
PREDICATES IN
HARDWARE

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Hardware OPs — ldea
« Stealthiness: use common structures.

* Try to use existing circuitry.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

23



Hardware OPs - Idea
 Stealthiness: use common structures.
* Try to use existing circuitry.

» Observation:

— Signals are changing constantly.
— A signal’s value is only important while evaluated.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

24



Hardware OPs — ldea
« Stealthiness: use common structures.
* Try to use existing circuitry.

* Observation:
— Signals are changing constantly.

— A signal’s value is only important while evaluated.

- Use an existing signal which
1. has the required state whenever we need it
2. switches “randomly” when not needed.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

25



Example: Hardware OPs

I?S}ﬂd

reset signal
Start I{CSCt ............................................ »

dmgml

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

F SI\*’IQ

26



Example: Hardware OPs M

FSM, F'SM,

reset signal
start Reset § e »

done signal

» Constant value required in Work1, Work2, and Work3.

* Multiple options to use the state of an FSM as an OP.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 27



Example: Hardware OPs

FSM, FSM,

reset signal
start Reset § e »

done signal

» Constant value required in Work1, Work2, and Work3.

* Multiple options to use the state of an FSM as an OP.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 28



Example: Hardware OPs

I?S}ﬂd

reset signal
Start I{CSCt ............................................ »

» Constant value required in Work1, Work2, and Work3.

* Multiple options to use the state of an FSM as an OP.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 29



Hardware OPs

« Example:
— Constant 1101000, to be obfuscated.

— 5-bit FSM passes 3 states during the processing period.

Cs

FF, | FF; | FF, | FF, | FF,
Q Q Q Q Q
[ 1
Cs Cy Cs Co Ch

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

30



Hardware OPs

1st State:

O

O

1 1

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

31



Hardware OPs

2nd State:

O

O

1 1

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

32



Hardware OPs

3rd State:

O

O

O

1 1

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

88



Hardware OPs

4th State:

O

O

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

34



Hardware OPs
* Very stealthy: existing FSMs are used.

- /Zero additional gates (in theory...)

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

35



Hardware OPs

Very stealthy: existing FSMs are used.

Zero additional gates (in theory...)

Applicable to nearly all designs.

Considerably increases reversing effort:
Reversing of control- and data-path required for identification of constants.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

36



Hardware OPs

Very stealthy: existing FSMs are used.
- /Zero additional gates (in theory...)
* Applicable to nearly all designs.

» Considerably increases reversing effort:
Reversing of control- and data-path required for identification of constants.

* Applicable to ASICs and FPGAs.

* Forces a reverse engineer to apply dynamic analysis.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

37



Hardware OPs

* |f no suitable FSM available, add a new FSM-like module.

— Make it reset outside of the processing period.
— Make it stabilize in a known state after some cycles.
— Generate OP value from stable state.

 Still stealthy (FSMs are common).

« Stabilizing FSMs are also common (DONE state).

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

38



CASE STUDIES

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

39



Scenario

Fixed Key -—

K )
eyﬁ{

(= Trigger 1 1-FF

Plaintext :

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

PRESENT

40



Scenario

Algorithm 1 Subverted RSA KeyGen

Input: 1%
Output: pk = (n,e), sk = (d)

1: Choose p, q as random \/2-bit primes
2: N < pPq

3: e «pfaedv_mod N4,

4:
5)
6
7

while gcd(e, ®(n)) # 1 do

e<—e+1

. d <« e ! mod ®(n)
. return pk = (n,e), sk = (d)

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

41



Results

Design LUTs FFs
Unobfuscated 304 347
PRESENT Strategy 1 307 40.99% | 347 4+0%
Strategy 2 304 +0% 350 +0.86%
Unobfuscated | 10570 5316
RSA Strategy 1 10811  +2.28% | 5314 —0.04%
Strategy 2 10692 +1.15% | 5323 +0.13%

Platform: XILINX Artix-7 35T FPGA
Legend:
Unobfuscated: no opaque predicates were used

Strategy 1: opaque predicate from existing circuitry
Strategy 2: new circuitry for the opaque predicate

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

42



APPLICATION:
WATERMARKING

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Watermarking

A watermark enables identification of IP- ety Onsase Predictes i Hduore.

th ft Obfuscating Constant Expressions at Negligible
e . Overhead

Max Hothsann and Christof Paar

Horst Ugrte Lestitute for [TeSccurnty, RubeeUniversdas Bochuss, Germany,
{max Noffas i sar}e 1o

Abstrect. Upague precicates are & nrleostabliiobol fusdamodal buibing Hock ke
scftwase ghuscalion Singlibod, as cpague prodicate usplemeats an cxprosnn that

* A vendor can inspect products for S EEe T

= softwasn, tchnigus for opagas perdicatos @ bardware are barely explosed. In
this work, we pooposs & novel trckniqar to merartiate opagan prodiases o hardwars
woigh that they (1) are mscurce etficsmt, sad (2) sov challenging to neverse smgaeer

H wvem with dyrane azalyes capabilites. We demanerate the applicabiley of apssqoe
resence of his watermar R LI
p L} of coyptimgraptic Matware Trojass, (i wiw that we are alile

wl over bend i a0

Keywerds: Opacun Pondieates - ¢ + Hard Heovere ¥
Hardwase Analyas

1 Introduction

i testing hatdware ootes s both tine consaning
gD poocess, e cveay heoe of & grodort s
otk oot poutlally o Taeedhect ual Pragerty (TP )=curm, |
arlie for TP-cievm b Burge with USD 245 billion b 2053 [1]
Bo woesdi USD 622 Bl by 2028° 3. 1Pcores are sold
as cither soffecores (o the foem of MDL code. Armeomes as o Betlist, or Aardecores s a

« Schmid et al. proposed a watermarking
scheme for FPGAs which implements a e DR

can illegally be coplod withowt relicensing, Additiosally, [P<ores B Bertue o s joe

and was rocently “expocte

Largot for roveeso englnoisg (o order to wonderstand techaologits of eamipotitons snd 10

. . . tind lidden backdoors

watermark into contigurations Sy gy
. To comter TP-thell, vendoes Include watsrmarks g ShelE products. A waterssark le

a wardore o custosmr-spocife aitribute, embodded Bl O dodgn. Tt dom oot lmpsee

funetioeality but It existence ean easily be verlling b the woador. Comsequestly, the

vendor s sbie 1o analyze products oo the market for bocuse violatons, Howews, slage

p (e £ (L8 o wostly discousicted
Iy bevvraghig these progeeties aid
o, To conuter such nersval artacks sl landen

sich a wotermark bs often o

rest of the clreultry

Licensed ender {'reative Commons Licenss DC-BY 40 -

IACK T o Crypeo and Embeddad Syetemse Vol 0, Nadl pp. 1—21,

[1] Schmid, Moritz, and Ziener, Daniel, and Teich, Jurgen. "Netlist-level IP protection by watermarking for LUT-based FPGAs." (FPT 2008)

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 44



FPGA LUT Configuration

A LUT is configured by defining it's output values.

Example:
I3; 1000000001111 1111
I, 0000111100001 111
I 001100110011 0011
Ip 101 01010101010101
output/config | 1 01 1101000011010

These configurations can be read from the bitstream of an FPGA.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 45



Watermarking by Schmid et al.

Idea: fix some inputs to GND.

GND —-I3 | 0000000011111 111
GND -1, |0000111100001111
[ 001100110011 0011
lp 01 01010101010101

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Watermarking by Schmid et al.

* ldea: fix some inputs to GND.

« Configuration bits for other cases become effectively unused.

GND —-I3|0000O0CO0OO0OCO0OT1TI1T 111111
GND—-I, |0000111100001111
L] 00110011001 10011
Ilp )01 0101010101010 1

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018



Watermarking by Schmid et al.

* ldea: fix some inputs to GND.
« Configuration bits for other cases become effectively unused.

 Embed watermark there.

GND — 13 0
GND — I, | 0

I | O

Ip | O
output/config | C

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 48



Applying OPs M

* Netlist-level attacker was included in attacker model.

* Problem: Tracing GND to LUTs = detected = easy to remove the watermark.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

49



Applying OPs M

Netlist-level attacker was included in attacker model.

Problem: Tracing GND to LUTs = detected - easy to remove the watermark.

Solution: Use our OPs instead of GND.

OP I3/ 0000000011111 111
OP -1, | 0000111100001 111
L] 0011001100110011

Ilp |]0101010101010101
output/config | CC CCWWWWWWWWWWWW

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018 50



CONCLUSION

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

51



Conclusion
* Novel technique for opaque predicates in hardware (ASICs + FPGAS).
« Strong technique (discussion in the paper).

 Instantiation strategies:
— Existing circuitry.
— Additional circuitry.

* Practical evaluation.

» Demonstrate potential to mitigate existing attacks.

Stealthy Opaque Predicates in Hardware | CHES 2018 | 10.09.2018

52



Thank You For Your Attention!
Any Questions?

hg1:

Horst Gortz Institut B
far IT-Sicherheit B



