
Formal Verification of Masked

Implementations
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1 � Side-Channel Attacks and Masking

2 � Formal Tools for Verification at Fixed Order

3 � Formal Tools for Verification of Generic Implementations
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Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-channel analysis

Alice Bob

c= 011100110101010110001010

ENCm

k

c DECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis: A ← (m, c)

Ü Side-Channel Analysis

Alice Bob

c= 011100110101010110001010

ENCm

k

c DECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCm

k

c DECDECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCm

k

c DECDECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCm

k

c DECDECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCm

k

c DECDECc

k

m

L

4 / 47



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCm

k

c DECDECc

k

m

L

4 / 47



Example of SPA

Algorithm 1 Example
for i = 1 to n do

if key[i] = 0 then
do treatment 0

else
do treatment 1

end if
end for

SPA: one single trace to recover the secret key
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Example of DPA

DPA: several traces to recover the secret key

6 / 47



How to thwart SCA?

m

k

c

L

Issue: leakage L is key-dependent

Idea of masking: make leakage L random

sensitive value: v = f(m, k)

v0 ← v ⊕

( ⊕
16i6t

vi

)
v1 ← $ ... vt ← $

Ü any t-uple of vi is independent from v
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Masked Implementations

� Linear functions: apply the function to each share

v ⊕ w → (v0 ⊕ w0, v1 ⊕ w1, . . . , vt ⊕ wt)

� Non-linear functions: much more complex

∀ 0 ≤ i < j ≤ t− 1, ri,j ← $

∀ 0 ≤ i < j ≤ t− 1, rj,i ← (ri,j ⊕ viwj)⊕ vjwi

∀ 0 ≤ i ≤ d− 1, ci ← viwi ⊕
∑
j 6=i

ri,j

vw → (c0, c1, . . . , ct)
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Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is t-probing secure iff any set composed of the exact

values of at most t intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I t-probing security ⇒ security in the noisy leakage model for

some level of noise
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How to Verify Probing Security?

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?
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Non-Interference (NI)

� t-NI ⇒ t-probing secure

� a circuit is t-NI iff any set of t intermediate variables can be
perfectly simulated with at most t shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

can be simulated
with x0 and x1
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Non-Interference (NI)

� t-NI ⇒ t-probing secure

� a circuit is t-NI iff any set of t intermediate variables can be
perfectly simulated with at most t shares of each input

Ex-t3
3

observations

x0 x1 x2 x3 (= x+ x0 + x1 + x2)

y0 y1 y2 y3
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1 � Side-Channel Attacks and Masking

2 � Formal Tools for Verification at Fixed Order

3 � Formal Tools for Verification of Generic Implementations
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State-Of-The-Art

� several tools were built to formally verify security of first-order
implementations t = 1

� then a sequence of work tackled higher-order implementations
t ≤ 5
I maskVerif from Barthe et al.: first tool to achieve verification

at high orders
I CheckMasks from Coron: improvements in terms of efficiency
I Bloem et al.’s tool: treatment of glitches attacks
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maskVerif

� input:
I pseudo-code of a masked implementation
I order t

� output:
I formal proof of t-probing security (or NI, SNI)
I potential flaws

Gilles Barthe and Sonia Beläıd and François Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub Verified Proofs of Higher-Order
Masking, EUROCRYPT 2015, Proceedings, Part I, 457–485.
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Checking probabilistic independence

Problem: Check if a program expression e is probabilistic
independent from a secret s
Example: e = (s⊕ r1) · (r1 ⊕ r2)

First solution:
� for each value of s computes the associate distribution of e
� if all the resulting distribution are equals then e is independent

of s

s = 0


r1 r2 e
0 0 0
0 1 0
1 0 1
1 1 0

s = 1


r1 r2 e
0 0 0
0 1 1
1 0 0
1 1 0

� Complete
� Exponential in the number of secret and random values
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Checking probabilistic independence

Second solution, using simple rules:

� Rule 1: If e does not use s then it is independent

� Rule 2: If e can be written as C[f ⊕ r] and r does not occur in
C and f then it is sufficient to test the independence of C[r]

� Rule 3: If Rules 1 and 2 do not apply then use the first
solution (when possible)

The distribution of f ⊕ r is equal to the distribution of r
Problem: finding occurence of Rule 2 is relatively costly
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Independence: dag representation

(s⊕ r1) · (r1 ⊕ r2)

s r1 r2

⊕ ⊕

·

s r1

⊕ r2

·

r1 r2

·
Independent from the secret
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First order Dom AND : NI

a0

b0

a1

b1

⊗
⊗
⊗
⊗

r

⊕
⊕

⊕
⊕

c1

c0

{a0}

{b0}

{a0}

{b1}

{a1}

{b0}

{a1}

{b1}

{a0 ⊗ b1}

{a1 ⊗ b0}

{a0 ⊗ b0}

{a1 ⊗ b1}

{r}

{a0 ⊗ b1 ⊕ r}

{a1 ⊗ b0 ⊕ r}

{a1 ⊗ b1 ⊕ a0 ⊗ b1 ⊕ r}

{a0 ⊗ b0 ⊕ a1 ⊗ b0 ⊕ r}
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Extension to All Possible Sets

� Verification of first order masking is just a linear iteration of
the previous algorithm (one call for each program point)
100 checks for a program of 100 lines

� For second order masking:
forall pair of program point, the corresponding pair of
expressions is independent from the secrets
4, 950 checks for a program of 100 lines

� For t-order masking:
forall t-tuple of program point, the corresponding t-tuple of
expressions is independent from the secrets(
N
t

)
where N is the number program points

3, 921, 225 for a program of 100 lines and 4 observations
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Extension to All Possible Sets

Idea: if e1, . . . , ep is independent from the secrets then all
subtuples are independent from the secrets.

X X̂ C
(
X̂
)

1. select X = (t variables) and prove
its independence

2. extend X to X̂ with more
observations but still independence

3. recursively descend in set C(X̂)

4. merge X̂ and C(X̂) once they are
processed separately.

Finding X̂ can be done very efficiently using a dag representation
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Benchmark

It is working for relatively small programs:

Algorithm Order Tuples Secure Verification time

Refresh 9 2.1010 X 2s

Refresh 17 2.1020 X 3d

Refresh 18 4.1021 X 1 month

But there is a problem with large programs:

� Full AES implementation at order 1

� only 4 rounds of AES at order 2
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Demo

https://sites.google.com/view/maskverif/home

Demo maskVerif
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Extending the model: glitches

For hardware implementation a more realistic model need to take
into account glitches

Example: AND gate A
⊗

B

A

B
A ·B

Possible leaks : A ·B, A, B
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First order DOM AND : NI with glitches
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First order DOM AND : NI with glitches
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Hardware implementation

We have extended maskVerif to

� take Verilog implementation as input

� take extra information on input shares (random, shares secret,
public input)

� Check the security with or without glitches
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Demo Hardware

https://sites.google.com/view/maskverif/home

yosys + maskVerif
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Examples (provided by Bloem et al)

Algo # obs probing
wG woG wG woG

first-order verification
Trichina AND 2 13 0.01s 7 0.01s 7

ISW AND 1 13 0.01s 7 0.01s
DOM AND 4 13 0.01s 0.01s
DOM Keccak S-box 20 76 0.01s 0.01s
DOM AES S-box 96 571 2.3s 0.4s

second-order verification
DOM Keccak S-box 60 165 0.02s 0.02s

third-order verification
DOM Keccak S-box 100 290 0.28s 0.25s

fourth-order verification
DOM Keccak S-box 150 450 11s 14s

fifth-order verification
DOM Keccak S-box 210 618 9m44s 18m39s
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1 � Side-Channel Attacks and Masking

2 � Formal Tools for Verification at Fixed Order

3 � Formal Tools for Verification of Generic Implementations
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Probing Model

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

Simulation-based proof:

� show that any set of t variables can be simulated with at most
t input shares xi

� any set of t shares xi is independent from x

� exactly relies on the notion of non interference (NI)
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And then?

once done for small gadgets, how to extend it?
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Until Recently

� composition probing secure for 2t+ 1 shares

� no solution for t+ 1 shares
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First Proposal

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

⇒ Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)
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Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0
observations

t1
observations

t2
observations

t3
observations
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Second Proposal

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 0 to t do
for j = i+ 1 to t do

r ← $
xi ← xi + r
xj ← xj + r

end for
end for
return [x]

⇒ Formal security proof for any order t
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Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure

� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

require x0 and x1
to be perfectly
simulated ⇒ not
3-SNI since y0 is
an output variable
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Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure

� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

Refresh
2 internal

observations

+ 1 output
observation

x0 x1 x2 x3

y0 y1 y2 y3
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Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t
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R

[×]

t0
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Tool maskComp

� from t-NI and t-SNI gadgets ⇒ build a t-NI circuit by
inserting t-SNI refresh gadgets at carefully chosen locations

� formally proven

maskComp
Implementation in

C language with

no countermeasure

t-NI secure

implementation

in C language

Gilles Barthe and Sonia Beläıd and François Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub Strong Non-Interference and
Type-Directed Higher-Order Masking and Rebecca Zucchini, ACM CCS 2016,
Proceedings, 116–129.
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Demo AES S-box without refresh
https://sites.google.com/site/maskingcompiler/home

[x]

[·2]

[×]

> ./maskcomp.native− o myoutput masked.c x3.c
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Demo AES S-box with refresh

https://sites.google.com/site/maskingcompiler/home

[x]

[·2]
R

[×]

> ./maskcomp.native − o myoutput masked.c x3.c
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Demo full AES

https://sites.google.com/site/maskingcompiler/home

> ./maskcomp.native − o myoutput masked.c aes.c
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Limitations of maskComp

� maskComp adds a refresh gadget to Circuit 1
� but Circuit 1 was already t-probing secure

[x1] [x2]

[+]

[×]

Figure: Circuit 1.

[x1] [x2]

[+]

R

[×]

Figure: Circuit 1 after
maskComp.
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Tool tightPROVE

� Joint work with Dahmun Goudarzi and Matthieu Rivain to
appear in Asiacrypt 2018

� Apply to tight shared circuits:
I sharewise additions,
I ISW-multiplications,
I ISW-refresh gadgets

� Determine exactly whether a tight shared circuit is probing
secure for any order t

1. Reduction to a simplified problem
2. Resolution of the simplified problem
3. Extension to larger circuits
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Demo tightPROVE 1

[x1] [x2]

[⊕]

[⊗]

(1) (2)

(3)

→
in 0

in 1

xor 0 1

and 0 2

out 3

→

------------------------

list_comb = [1, 3]

------------------------

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[3], []]

------------------------

------------------------

comb = 3

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[1], []]

------------------------

No attack found

> sage verif.sage example1.circuit
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Demo tightPROVE 2

[x1] [x2] [x3]

[⊕] [⊕]

[⊗] [⊗] [⊗]

(1) (2) (4)

(3)
(6)

→

in 0

in 1

in 2

xor 0 1

xor 1 2

and 0 1

and 3 4

and 2 3

out 5

out 6

out 7

→

-------------------------------

list_comb = [1, 3, 2, 4, 6]

-------------------------------

comb = 1

=> NO ATTACK (G3 = G2)

G: [[(1 ,2)], [(3,6) ,(3,4)],

[]]

O: [[2], [6, 4], []]

-------------------------------

-------------------------------

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,2)],

[]]

O: [[6, 4], [2], []]

-------------------------------

-------------------------------

comb = 2

=> ATTACK

G: [[(1 ,2)], [(3,6) ,(3,4)]]

O: [[1], [6, 4]]

-------------------------------

Attack found: 2 in span [1, 6,

4]

> sage verif.sage example2.circuit
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Conclusion

In a nutshell...

� Formal tools to verify security of masked implementations

� Trade-off between security and performances

To continue...

� Achieve better performances

� Apply such formal verifications to every circuit
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