Formal Verification of Masked
Implementations

Sonia Belaid Benjamin Grégoire

CHES 2018 - Tutorial
September 9th 2018

Ve

So
CRYPTOEXPERTS" lrreia —

inventeurs du monde numérique

1/47

Side-Channel Attacks and Masking

Formal Tools for Verification at Fixed Order

Formal Tools for Verification of Generic Implementations

47

Side-Channel Attacks and Masking

3 /47

Black-box cryptanalysis
Side-channel analysis

E 4 ¢=011100110101010110001010 =»

Alice Bob

47

Black-box cryptanalysis: A < (m,c)

4 ¢=011100110101010110001010 =»

Alice Bob

E (=R

47

Cryptanalysis

=» Side-Channel Analysis: A <+ (m,¢, L)

C

< ¢=011100110101010110001010 = iﬂ
E
l

-

EC

s

4 /47

Cryptanalysis

=» Side-Channel Analysis: A <+ (m,¢, L)

< ¢=011100110101010110001010 =

Bob

D

P m

4 /47

Cryptanalysis

=» Side-Channel Analysis: A <+ (m,¢, L)

TS

< ¢=011100110101010110001010 =

Bob

-

D

s

4 /47

Cryptanalysis

=» Side-Channel Analysis: A <+ (m,¢, L)

< ¢=011100110101010110001010 = i

Alice "
l

m

TS

4/47

Cryptanalysis

=» Side-Channel Analysis: A <+ (m,¢, L)

Alice

< ¢=011100110101010110001010 = f
ko
l

m c =D —>m

4/47

Algorithm 1 Example
for i =1 ton do
if key[i] = 0 then
do treatment 0

else
d? treatment 1 treatment 1
end if
end for

[secret = 1011100101001

SPA: one single trace to recover the secret key

Observations and extraction
of points of interest:

P P1
| P2
k* $ P3
a Distinguisher: CPA
Predictions: Model:
{ S(py +hyp) s HWIS(p: + hypy)

S(p2 + hypy) HW(S(p, + hypy))
S(ps + hypy) HW(S(p3 + hypy))

DPA: several traces to recover the secret key

6 /47

How to thwart SCA?

k

N
e N
N

N

Issue: leakage L is key-dependent

7/47

How to thwart SCA?

k
N

m —)\
N
L
Idea of masking: make leakage £ random
sensitive value: v = f(m, k)
wﬂ—v@(@ vi> v] +— $ v — $
1<i<t

= any t-uple of v; is independent from v

Issue: leakage L is key-dependent

7/47

Masked Implementations

= Linear functions: apply the function to each share

v@®w — (vo D wo,v1 D wr, ..., v HDwy)

8,47

Masked Implementations

= Linear functions: apply the function to each share

v@®w — (vo D wo,v1 D wr, ..., v HDwy)

= Non-linear functions: much more complex

V0§i<j§t—1, ’l“i’j(—$
VO<i<j<t-—1, iji%(Ti’j@inj)@’iji
Vo<i<d-1, ci<—viwi®2ri7j
J#i
vw — (co,C1,...,¢)

8/47

Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the exact
values of at most ¢ intermediate variables is independent from

raes

9/47

Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

» a circuit is t-probing secure iff any set composed of the exact
values of at most ¢ intermediate variables is independent from
the secret

= Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)

» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

9/47

by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the
of at most ¢ intermediate variables is independent from
the secret
by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

by Duc, Dziembowski, and Faust (EC 2014)

» t-probing security = security in the noisy leakage model for
some level of noise

47

How to Verify Probing Security?

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):
(* vo,x1,00 =8 %)
(¥os=x+x0+azi a0 *)

o < $
T < $
Yo < 1o+ 1o
Yp — I3+ 1
ty <11 +1g
to < (11 + 7o) + 0
y2 = (1 4+ro+10)+ 11
Y3 < c+ry
return(yo, y1, Y2, y3)

10/47

How to Verify Probing Security?

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):

(*wo, 01,00 =8 %)
(¥os=x+x0+azi a0 *)

rg < $
independent from

Yo < 1o+ 10
Y1 I3+
t1 < 11 +10
(r1 +70) + 12
(1 +ro+)+
—c+1r
return(yo, y1, Y2, y3)

the secret?

10/ 47

How to Verify Probing Security?

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):

(*ro,z1,00 =8 %)
(¥os=x+x0+azi a0 *)

o < $

) r < $
independent from — a0+ 10
the secret? — 541
1471 +70

Ly = (1 + 1) + 10
— (11 +ro+a0)+r
Y3 < c+r
return(yo, y1, Y2, y3)

10/ 47

t-NI = t-probing secure
a circuit is t-NI iff any set of ¢ intermediate variables can be
perfectly simulated with at most ¢ shares of each input

function Ex-t3(v, 71,10, 13, ¢):

(* wo, 21, =8$%)
(Fos=z4+z0+z + *)

Ty < $
can be simulated ‘T : § I
with and @ "o
1 +r1
\@H + 1o
2 (11 +70) +

Yo < (114104 12) +71
Y3 < c+ry
return(yo, y1, Y2, y3)

11 /47

Non-Interference (NI)

= ¢-NI = t-probing secure

= a circuit is t-NI iff any set of ¢ intermediate variables can be
perfectly simulated with at most ¢ shares of each input

7

Ex-t3))>> 3

=x+arg+x + .172)

observations

Yo Y1 Y2 Y3

12/ 47

Formal Tools for Verification at Fixed Order

13 /47

several tools were built to formally verify security of first-order
implementations t = 1
then a sequence of work tackled higher-order implementations
t<5
» maskVerif from Barthe et al.: first tool to achieve verification
at high orders
» CheckMasks from Coron: improvements in terms of efficiency
» Bloem et al.’s tool: treatment of glitches attacks

14 /47

several tools were built to formally verify security of first-order
implementations t = 1
then a sequence of work tackled higher-order implementations
t<5
> from Barthe et al.: first tool to achieve verification
at high orders
» CheckMasks from Coron: improvements in terms of efficiency
» Bloem et al.’s tool: treatment of glitches attacks

14 /47

input:
» pseudo-code of a masked implementation
» order ¢
output:
» formal proof of ¢-probing security (or NI, SNI)
» potential flaws

Gilles Barthe and Sonia Belaid and Frangois Dupressoir and Pierre-Alain Fouque

and Benjamin Grégoire and Pierre-Yves Strub
EUROCRYPT 2015, Proceedings, Part |, 457-485.

15 /47

Problem: Check if a program expression e is probabilistic

independent from a secret s

Example: e = (s @ ry) - (11 © r2)

First solution:

for each value of s computes the associate distribution of e
if all the resulting distribution are equals then e is independent

of s

= =0 O 3
i,

T2

_ o = O

SO = OO0

T2

1
0
1

e
0
1
0
0

16 / 47

Problem: Check if a program expression e is probabilistic
independent from a secret s
Example: e = (s @ 71) - (1 @ r2)

First solution:
for each value of s computes the associate distribution of e
if all the resulting distribution are equals then e is independent
of s
Complete

Exponential in the number of secret and random values

16 / 47

Checking probabilistic independence

Second solution, using simple rules:

= Rule 1: If e does not use s then it is independent

17 /47

Checking probabilistic independence

Second solution, using simple rules:
= Rule 1: If e does not use s then it is independent

= Rule 2: If e can be written as C[f @ r| and r does not occur in
C and f then it is sufficient to test the independence of C[r]

The distribution of f @ r is equal to the distribution of r

17 /47

Second solution, using simple rules:
Rule 1: If e does not use s then it is independent

Rule 2: If e can be written as C[f @] and r does not occur in
C and f then it is sufficient to test the independence of C[r]

Rule 3: If Rules 1 and 2 do not apply then use the first
solution (when possible)

17 /47

Checking probabilistic independence

Second solution, using simple rules:
= Rule 1: If e does not use s then it is independent

= Rule 2: If e can be written as C[f @ r| and r does not occur in
C and f then it is sufficient to test the independence of C[r]

= Rule 3: If Rules 1 and 2 do not apply then use the first
solution (when possible)

Problem: finding occurence of Rule 2 is relatively costly

17 /47

Independence: dag representation

(s@®r1) - (r1®r2)

18 /47

Independence: dag representation

(s®ry)-ro

18 /47

Independence: dag representation

T1 T2

. Independent from the secret

18 /47

First order Dom AND : NI

{ao}
ao ’ @ _ {ao®bo} {ao @ b1 ® 1}
ao} ‘ N {uebhoawebor}
oo} AN N
a ®b \ N
bo B D - D a
bo} . A)
”
b1} N
b \ ® o @ J Sl
1} J/)
a1} ‘ /// {ao ® bo @ a1 ® by & 1}
ajy o X {a1 ® b1} {a1 @ bo @}
ai

19/ 47

Extension to All Possible Sets

= Verification of first order masking is just a linear iteration of
the previous algorithm (one call for each program point)
100 checks for a program of 100 lines

20/ 47

Extension to All Possible Sets

= Verification of first order masking is just a linear iteration of
the previous algorithm (one call for each program point)
100 checks for a program of 100 lines

= For second order masking:
forall pair of program point, the corresponding pair of
expressions is independent from the secrets
4,950 checks for a program of 100 lines

20 /47

Extension to All Possible Sets

= Verification of first order masking is just a linear iteration of
the previous algorithm (one call for each program point)
100 checks for a program of 100 lines

= For second order masking:
forall pair of program point, the corresponding pair of
expressions is independent from the secrets
4,950 checks for a program of 100 lines

» For t-order masking:
forall t-tuple of program point, the corresponding t¢-tuple of
expressions is independent from the secrets
(]X) where N is the number program points

3,921,225 for a program of 100 lines and 4 observations

20 /47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

21/ 47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

21/ 47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

1. select X = (t variables) and prove
its independence

21/ 47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

1. select X = (t variables) and prove
its independence

0. extend X to X with more
observations but still independence

21/ 47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

1. select X = (t variables) and prove
its independence

R 0. extend X to X with more
¢(x) observations but still independence

3. recursively descend in set C(X)

21/ 47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

1. select X = (t variables) and prove
its independence

R 0. extend X to X with more
¢(x) observations but still independence

3. recursively descend in set C(X)

4. merge X and C(X) once they are
processed separately.

21/47

Extension to All Possible Sets

Idea: if eq,..., e, is independent from the secrets then all
subtuples are independent from the secrets.

1. select X = (t variables) and prove
its independence

R 0. extend X to X with more
¢(x) observations but still independence

3. recursively descend in set C(X)

4. merge X and C(X) once they are
processed separately.

Finding X can be done very efficiently using a dag representation

21/47

It is working for relatively small programs:

| Algorithm | Order | Tuples | Secure | Verification time

Refresh 9 2.1019 v 2s
Refresh 17 2.10% Ve 3d
Refresh 18 4.10%1 Ve 1 month

But there is a problem with large programs:
Full AES implementation at order 1
only 4 rounds of AES at order 2

22 /47

https://sites.google.com/view/maskverif/home

Demo maskVerif

23 /47

https://sites.google.com/view/maskverif/home

Extending the model: glitches

For hardware implementation a more realistic model need to take
into account glitches

Example: AND gate AQ B

A
D
B

Possible leaks : A- B, A, B

24 / 47

First order DOM AND : NI with glitches

{ao}
ap ’ ® {ap ® bo} {ao ® b1 @7}
ao} ' N {uebhoawebor}
oo} AN N
Qa ®b \ N
bo Q {ao ® b1}) R @ o
bo} . A)
-
{61} N
by . X (o o) D ~ e?/,—> co
1} K o
ai} X /// {ao ® bo a1 ® by & 1}
ai = X {a1 ® b1} {a1 @ bo ® 1}
ay

25/ 47

First order DOM AND : NI with glitches

{ao}
ag ’ X {ao,bo}

ap} \ {ao,b1,7} {ao,a1,bo,b1,7}
{bo} ag,b E E

" PGS . & Lo
bo} A

r {r}

b1} N

b1 . X (o) Q) : &b —E-> o
a1} | {al,bo,T} {ao,al,bo,bl,T}

{a1,b1}
{a1} ®

ai

25/ 47

First order DOM AND : NI with glitches

bl} {alvbO} : U
{a1,bo,r}
al} 1
a {a1,b1}
@

25/ 47

First order DOM AND : NI with glitches

{ao}
ap

® {ao, bo} {aobl + 7"}

bl} {alvbO} : U
{a1,bo,r}
al} 1
a {a1,b1}
@

25/ 47

First order DOM AND : NI with glitches

ap {ao} ® {ao, bo} {a0b1 + 7"}
ap} ! : {apb1 +r,a1,b1}
oo} {ag,b1,7r} ! \
ap, b : ! \
bo ® M (FF)—
bo} A

{a1,bo,7} | !
'{a1bo +r,a0,b0}

® {alybl} {Cblbo +T}

25/ 47

First order DOM AND : NI with glitches

ap {ao} ® {ao, bo} {a0b1 + 7"}
ap} ! : {apb1 +r,a1,b1}
oo} {ao,b1,7} ! \
ap, b : ! \
bo ® M (FF)—
bo} A

{a1,bo,7} | !
'{a1bo +r,a0,b0}

® {alybl} {Cblbo +T}

25/ 47

First order DOM AND : NI with glitches

ao oo} ® {ao,bo} {aob1 + 7}
(10} ! :{a0b1 -I-T',al,bl}
oo} {ao,b1,7} : \
{ao, b1} ! | \
bo X oo D <]§Ei> | P - a
bo} A
fou) N
1
(e
bl - ® {a1,b0} @ : \FFJ : @ ,7_} 0
. {a1,bo, 7} | !
a1} | t{a1bo +7,a0,b0}
ay ® e} {a1bo + 1}
{a1}

25/ 47

Hardware implementation

We have extended maskVerif to
= take Verilog implementation as input

= take extra information on input shares (random, shares secret,
public input)

= Check the security with or without glitches

26 /47

Demo Hardware

https://sites.google.com/view/maskverif/home

yosys + maskVerif

27/ 47

https://sites.google.com/view/maskverif/home

Examples (provided by Bloem et al)

Algo # obs probing |
wG | woG wG | woG
first-order verification

Trichina AND 2 13 0.01s X 0.01s X

ISW AND 1 13 0.01s X 0.01s

DOM AND 4 13 0.01s 0.01s

DOM Keccak S-box 20 76 0.01s 0.01s

DOM AES S-box 96 571 2.3s 0.4s
second-order verification

DOM Keccak S-box [60 | 165 [[0.02s [0.02s
third-order verification

DOM Keccak S-box [100 | 290 [[0.28s [0.25s
fourth-order verification

DOM Keccak S-box [150 | 450 [[11s | 14s

fifth-order verification

DOM Keccak S-box | 210 | 618 ||

9m44s | 18m39s

28/ 47

Formal Tools for Verification of Generic Implementations

29 /47

Require: Encoding [z]
Ensure: Fresh encoding [z]
fori=1tot¢ do
r<$
xo —x0+ T
T 4—x; +r
end for
return [z]

30/ 47

Require: Encoding [z]
Ensure: Fresh encoding [z]
fori=1tot¢ do
r<$
xo —x0+ T
T 4—x; +r
end for
return [z]

Simulation-based proof:

show that any set of ¢ variables can be simulated with at most
t input shares x;

any set of ¢ shares x; is independent from x

30/ 47

Require: Encoding [z]
Ensure: Fresh encoding [z]
fori=1tot¢ do
r«$
xo < To + 7T
—xp+r
end for
return [z]

Simulation-based proof:

show that any set of ¢ variables can be simulated with at most
t input shares x;

any set of ¢ shares x; is independent from x

exactly relies on the notion of non interference (NI)

30/ 47

And then?

once done for small gadgets, how to extend it?

3147

Until Recently

= composition probing secure for 2¢ 4 1 shares

= no solution for ¢ + 1 shares

3247

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

[z]

[®

Require: Encoding [z]
Ensure: Fresh encoding [z]
for i =1 to ¢t do
r$
xo < xo + 71
Ti < T + T
end for
return [z]

33 /47

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

x
2] 2 Require: Encoding [z]
@ Ensure: Fresh encoding [z]
for i =1 to ¢t do
r$
E xo < xo + 71
Ti < T + T

end for
return [z]

= Flaw from ¢ = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

33 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+ti+to+1t3 <t

observatlons
observatlons
observatlons

t3

)
observatlons \ Y

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+ti+to+1t3 <t

(2]
tq
observations
B 5
observations

/X
([x])
AN

to
observations
1)
/

3
observations

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t

t1 + 1o + 13
observations

to + t3
observations { [2]

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t
to + t3 [x]

observations r_\
t1 + 1o + 13
observations

34 /47

Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t

to + 3
+t1 + 12 + tg{ [I]

observations @ }
{ (-

34 /47

Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)
Example: AES S-box on GF(2%)

Require: Encoding [z]

z
2] 2 Ensure: Fresh encoding [z]
@ for i =0 to t do
for j=i+1totdo
7] r<$
T x; +r
Tj— x5+

end for
end for
return [z]

35 /47

Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)
Example: AES S-box on GF(2%)

[z] Require: Encoding [z]
2] Ensure: Fresh encoding [z]

@ for i =0 tot do
for j=i+1totdo
ﬂ r<$
T <X + 71
Tj— x5+
end for

end for
return [z]

= Formal security proof for any order ¢

35 /47

Strong Non-Interference (SNI)

= {-SNI = t-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and ¢ and the outputs, can be
perfectly simulated with at most 7 shares of each input

function Ex-t3(0, 71, 10, 13, ¢):
=57
(*rs=x+x0+ 21+ 20 *)
require 1 and 1 ro <+ $
to be perfectly ri <+ $
simulated = not F Lo +To

3-SNI since yq is 1 ag+r
an output variable 1+
2 (11 4+ 10) + 10

ya < (1 +ro+aro)+r
Y3 —c+ry
return(yo, y1, Y2, Y3)

36 /47

Strong Non-Interference (SNI)

= t-SNI = ¢t-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and ¢ and the outputs, can be
perfectly simulated with at most /; shares of each input

R74

Refresh 2 |nterr_lal
)) >) observations

y(/@l{)z\n\y:}) } + 1 output

observation

37 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(2%)

Constraint:
tot+ti+tat+tz3 <t

observatlons
observatlons
observatlons

observatlons

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(2%)

Constraint:

tot+ti+tat+tz3 <t
to
observations { [2]

131
observations

E 2
observations
3

. (x])
observations

/

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:
to+t1+ta+i3 <t

ty
observations

E to internal observations
t3 output observations

to + 3
observations { 2]

{ ()

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:
to+t1+ta+i3 <t

ty
@ } observations\

E to internal observations
t3 output observations

to + 3
observations { 2]

{ ()

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:
to+t1+ta+1t3 <t
to + 13
observat|ons

ty + 12
observations

t3 output observations

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:
to+t1+ta+1t3 <t
to + 13
observat|ons

ty + 12
observatlons

t3 output observations

38 /47

Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:
to+t1+ta+t3 <t

to + t3
+t1 + t2 { [2]

observations @ }

E } t3 output ob-

servations
{ \‘XV>

38 /47

from t-NI and ¢-SNI gadgets = build a ¢-Nl circuit by
inserting t-SNI refresh gadgets at carefully chosen locations

formally proven

Implementation in t-NI secure
C language with — —— implementation
no countermeasure in C language

@ Gilles Barthe and Sonia Belaid and Francois Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub
ACM CCS 2016,
Proceedings, 116-129.
39 /47

https://sites.google.com/site/maskingcompiler/home

bint8_t x3(bint8_t x) {
bint8_t r, z;
z = gf256_pow2(x);
r = gf256_mul(x,z);
return rj

}

Start type checking of x3
insert refresh 1 1
x3 : {S_34 } —>
0_21
side
constraints LE:S_34 <= I_35
NEEDED:[{0_21 }1
1 refresh inserted in x3.
1 refresh inserted.

> ./maskcomp.native — o myoutput masked.c x3.c

40

47

https://sites.google.com/site/maskingcompiler/home

https://sites.google.com/site/maskingcompiler/home

bint8_t x3(bint8_t x) {
bint8_t r, w, z;
[:L,] _ Wy Zj

z = gf256_pow2(x);
w = bint8_refresh(x);
r = gf256_mul(w,z);
return r;

}

Start type checking of x3
x3 : {S_29 } —>
0_21
side
constraints LE:S_29 <= I_30
NEEDED:[{0_21 }1
@ refresh inserted.

> ./maskcomp.native — o myoutput masked.c x3.c

41

47

https://sites.google.com/site/maskingcompiler/home

Demo full AES

https://sites.google.com/site/maskingcompiler/home

> ./maskcomp.native — o myoutput masked.c aes.c

42 /47

https://sites.google.com/site/maskingcompiler/home

Limitations of maskComp

= maskComp adds a refresh gadget to Circuit 1
= but Circuit 1 was already t-probing secure

[z1] [[21] [2]

(29 -
Figure: Circuit 1. Figure: Circuit 1 after

maskComp.

43 /47

Joint work with Dahmun Goudarzi and Matthieu Rivain to
appear in Asiacrypt 2018
Apply to

» sharewise additions,

» ISW-multiplications,

» ISW-refresh gadgets
Determine whether a tight shared circuit is probing
secure for any order t

Reduction to a simplified problem
Resolution of the simplified problem
Extension to larger circuits

44 / 47

Demo tightPROVE 1

list_comb = [1, 3]

comb = 1

=> NO ATTACK (G2 = G1)
in 0 G: [[(1,3)], (1]
in 1 0: [[31, [1]
xor 0 1 B
and 0 2 | = | ----o-o-o—mo—————————————
out 3 comb = 3

=> NO ATTACK (G2 = G1)

G: [[(1,3)], [1]
0: [[11, (1]

No attack found

> sage verif.sage examplel.circuit

45 /47

Demo tightPROVE 2

in O
in 1
in 2
xor
xor
and

o
B
a
WA N e

and
out
out
out

NN WO R O

> sage verif.sage example2.circuit

46 / 47

Demo tightPROVE 2

comb = 1

=> NO ATTACK (G3 = G2)
G: [[(1,2)], [(3,6),(3,4)],
[11
0: [[2], [6, 4], [1]

S comt -
and 0 1 N => NO ATTACK (G3 = G2)
G: [[(3,6),(3,4)], [(1,2)],

and 3 4
and 2 3
out 5
out 6
out 7 comb = 2

=> ATTACK

G: [[C(1,2)], [(3,6),(3,4)]]
0: [[11, [6, 411

Attack found: 2 in span [1, 6,
4]

> sage verif.sage example2.circuit

46 / 47

In a nutshell...
Formal tools to verify security of masked implementations

Trade-off between security and performances

To continue...
Achieve better performances

Apply such formal verifications to every circuit

47 /47

	Side-Channel Attacks and Masking
	Formal Tools for Verification at Fixed Order
	Formal Tools for Verification of Generic Implementations

