NTTRU: Truly Fast NTRU Using NTT

Vadim Lyubashevsky and Gregor Seiler

IBM Research – Zurich

Aug 26, 2019
Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic
Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic

Goal: Design extremely *fast* variant of NTRU HRSS around state-of-the-art vectorized NTT arithmetic while maintaining *competitive sizes*
Motivation

- Symmetric key operations like sampling of random polynomials make up for majority of runtime in many LWE-based schemes
- NTRU schemes require less pseudo-randomness as there is no expansion of uniform public polynomial
- Expensive polynomial inversion during key generation in NTRU schemes is simple when using NTT-based arithmetic

Goal: Design extremely fast variant of NTRU HRSS around state-of-the-art vectorized NTT arithmetic while maintaining competitive sizes

This requires non-power-of-two NTT and non-fully-splitting prime modulus
Cyclic NTT

Let $\zeta \in \mathbb{Z}_q$ be a primitive n-th root of unity, i.e. $\zeta^n = 1$ but $\zeta^k \neq 1$ for $0 < k < n$.

For $f \in \mathbb{Z}_q[X]/(X^n - 1)$,

$$\text{NTT}(f) = (f(\zeta^0), f(\zeta^1), \ldots, f(\zeta^{n-1})) \in \mathbb{Z}_q^n$$

defines an isomorphism

In particular, polynomial multiplication/division in $\mathbb{Z}_q[X]/(X^n - 1)$ translates to coefficientwise multiplication/division in \mathbb{Z}_q^n
We want an irreducible defining polynomial φ for our ring $\mathcal{R} = \mathbb{Z}_q[X]/(\varphi)$.

If $n = 2^k$, then $X^n + 1$ is the irreducible $2n$-th cyclotomic polynomial.

Some schemes compute twisting map

$$\mathbb{Z}_q[X]/(X^n + 1) \xrightarrow{X \mapsto \zeta X} \mathbb{Z}_q[X]/(X^n - 1)$$

and then use the cyclic NTT. This is slightly non-optimal.
Algebraic Formulation of NTT

If there exists primitive n-th root of unity ζ in \mathbb{Z}_q, then

$$X^n - 1 = (X - 1)(X - \zeta) \cdots (X - \zeta^{n-1})$$

Now, by the Chinese remainder theorem,

$$\mathbb{Z}_q[X]/(X^n - 1) \cong \mathbb{Z}_q[X]/(X - 1) \times \cdots \times \mathbb{Z}_q[X]/(X - \zeta^{n-1})$$

The NTT is this CRT map
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} + 1) \]
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} + 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} + 1) \]
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - 1) \quad \mathbb{Z}_q[X]/(X^{n/4} + 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/4}) \]
Recursive Algorithm

\[
\mathbb{Z}_q[X]/(X^n - 1)
\]

\[
\mathbb{Z}_q[X]/(X^{n/2} - 1)
\]

\[
\mathbb{Z}_q[X]/(X^{n/4} - 1)
\]

\[
\mathbb{Z}_q[X]/(X^{n/4} + 1)
\]

\[
\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/2})
\]

\[
\mathbb{Z}_q[X]/(X^{n/4} + \zeta^{n/4})
\]
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - \zeta^{n/2}) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/2}) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/4}) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{3n/4}) \]
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - \zeta^{n/2}) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/2}) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - \zeta^{3n/4}) \]

\[\vdots \]

\[\vdots \]
Recursive Algorithm

\[\mathbb{Z}_q[X]/(X^n - 1) \]

\[\mathbb{Z}_q[X]/(X^{n/2} - 1) \quad \mathbb{Z}_q[X]/(X^{n/2} + 1) \]

\[\mathbb{Z}_q[X]/(X^{n/4} - 1) \quad \mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/2}) \quad \mathbb{Z}_q[X]/(X^{n/4} - \zeta^{n/4}) \quad \mathbb{Z}_q[X]/(X^{n/4} - \zeta^{3n/4}) \]

...
Our NTT of Length 768

Let $\mathcal{R} = \mathbb{Z}_{7681}[X]/(X^{768} - X^{384} + 1)$ and $\zeta \in \mathbb{Z}_{7681}$ be a primitive 768-th root of unity.

We want to compute

$$\mathbb{Z}_{7681}[X]/(X^{768} - X^{384} + 1) \cong \mathbb{Z}_{7681}[X]/(X^3 - \zeta) \times \cdots \times \mathbb{Z}_{7681}[X]/(X^3 - \zeta^{767})$$
$\mathbb{Z}_q[X]/(X^{768} - X^{384} + 1)$
Splitting Strategy

\[
\mathbb{Z}_q[X]/(X^{768} - X^{384} + 1)
\]

\[
\mathbb{Z}_q[X]/\left(X^{384} - \zeta^{768/6}\right)
\]

\[
\mathbb{Z}_q[X]/\left(X^{384} - \zeta^{5\cdot768/6}\right)
\]
Splitting Strategy

\[
\mathbb{Z}_q[X]/(X^{768} - X^{384} + 1)
\]

\[
\mathbb{Z}_q[X]/(X^{384} - \zeta^{\frac{768}{6}})
\]

\[
\mathbb{Z}_q[X]/(X^{384} - \zeta^{\frac{5\cdot 768}{6}})
\]

\[
\mathbb{Z}_q[X]/(X^{192} + \zeta^{\frac{768}{12}})
\]

\[
\mathbb{Z}_q[X]/(X^{192} - \zeta^{\frac{768}{12}})
\]

\[
\vdots
\]

\[
\vdots
\]
Splitting Strategy

\[\mathbb{Z}_q[X]/(X^{768} - X^{384} + 1) \]

\[\mathbb{Z}_q[X]/(X^{384} - \zeta^{768/6}) \]

\[\mathbb{Z}_q[X]/(X^{384} - \zeta^{-5 \cdot 768/6}) \]

Observe: \(\zeta^{768/6} \) is a root of \(X^2 - X + 1 \). Hence \(\zeta^{5 \cdot 768/6} = 1 - \zeta^{768/6} \).
Splitting Strategy

\[\mathbb{Z}_q[X]/(X^{768} - X^{384} + 1) \]

\[\mathbb{Z}_q[X]/(X^{384} - \zeta^{\frac{768}{6}}) \]
\[\mathbb{Z}_q[X]/(X^{384} + (\zeta^{\frac{768}{6}} - 1)) \]

Observe: \(\zeta^{\frac{768}{6}} \) is a root of \(X^2 - X + 1 \). Hence \(\zeta^{5 \cdot \frac{768}{6}} = 1 - \zeta^{\frac{768}{6}} \).
Two possibilities to vectorize products with roots of unity on AVX2

1. Pack only eight 16 bit coefficients in 256 bit registers and leave room for intermediate 32 bit products using instruction `vpmulld`

2. Densely pack sixteen 16 bit coefficients in 256 bit registers and compute separate low and high parts of 32-bit products using instructions `vpmullw` and `vpmulhw`

We use second approach with a variant of the Montgomery reduction algorithm that naturally handles this representation.
Signed Montgomery Reduction

Hensel remainder of c modulo q: Unique r such that

$$c = mq + r2^{16}$$

We have $r \equiv c2^{-16} \pmod{q}$

Algorithm:
1. Multiply c by q^{-1} modulo 2^{16}; gives m
2. Multiply m by q and subtract from c; gives $r2^{16}$
3. Divide by 2^{16} (shift right); gives r
Fast Mulmod

For product \(c = ab = mq + r2^{16} \) compute

\[
c = c_0 + c_12^{16}
\]

1. Multiply \(c \) by \(q^{-1} \) modulo \(2^{16} \); gives \(m \)
 Need only low word \(c_0 \) of \(c \)

2. Multiply \(m \) by \(q \) and subtract from \(c \); gives \(r2^{16} \)
 \(mq \) and \(c \) have equal low word; Sufficient to compute only high word of \(mq \) and subtract from high word \(c_1 \) of \(c \); This already gives \(r \)

Further Optimization: If \(b \) is precomputable constant, can also precompute \(bq^{-1} \mod 2^{16} \)
and skip first reduction step

Full mulmod in \(\mathbb{Z}_q \) with precomputed constant costing only three half products!
Results

<table>
<thead>
<tr>
<th>Bytes pk/ct</th>
<th>Cycles Key generation</th>
<th>Cycles Signing</th>
<th>Cycles Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248</td>
<td>6431</td>
<td>6101</td>
<td>7878</td>
</tr>
</tbody>
</table>

Measurements performed on Intel Skylake Core i7-6600U CPU
Possible Tweaks

- Use prime modulus $q = 3457$ instead of 7681
 Would result in about the same sizes as NTRU HRSS
Possible Tweaks

- Use prime modulus $q = 3457$ instead of 7681

 Would result in about the same sizes as NTRU HRSS

- Deterministic noise