Implementing RLWE-based Schemes Using an RSA Co-Processor

Martin R. Albrecht1, Christian Hanser2, Andrea Hoeller2, Thomas Pöppelmann3, Fernando Virdia1, Andreas Wallner2

1Information Security Group, Royal Holloway, University of London, UK
2Infineon Technologies Austria AG
3Infineon Technologies AG, Germany

August 26, 2019
CHES 2019
Atlanta, GA
Overview

- Prelude
 - Post-quantum cryptography
- Deploying cryptography
 - Deployment in general
 - Lattice-based cryptography
- Ring arithmetic on RSA co-processors
 - Kronecker Substitution
 - Splitting rings
- Implementation
- Future directions
Post-quantum cryptography

[Sho97] introduces a fast\(^1\) order-finding quantum algorithm that allows factoring and computing discrete logs in Abelian groups.

Since then, there has been a growing effort to develop new public-key primitives that can resist cryptanalysis using large-scale general quantum computers.

Many of the schemes proposed to NIST for standardisation are based on problems defined over polynomial rings, such as the RLWE problem.

\(^1\)Let’s not go there.
In practice, cryptographic schemes have two crucial requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

2Other than being secure in some appropriate model!
In practice, cryptographic schemes have two crucial requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers were required to provide fast software implementations with a focus on modern CPU architectures.

Furthermore, a lot of work has been done in the direction of constrained (often embedded) environments such as microcontrollers or \textit{smart cards}.
Currently available smart-cards provide low-power 16-bit and 32-bit CPUs and small amounts of RAM.
Currently available smart-cards provide low-power 16-bit and 32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling them to run Diffie-Hellman key exchange (over finite fields and elliptic curves) and RSA encryption and signatures.
Currently available smart-cards provide low-power 16-bit and 32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling them to run Diffie-Hellman key exchange (over finite fields and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card provides:

- 16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,
- AES and SHA256 co-processors (and DES!),
- \mathbb{Z}_N adder and multiplier for $\log_2 N = 2200$ (“the RSA co-processor”).
Currently available smart-cards provide low-power 16-bit and 32-bit CPUs and small amounts of RAM.

These are augmented with specific co-processors enabling them to run Diffie-Hellman key exchange (over finite fields and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card provides:

- 16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,
- AES and SHA256 co-processors (and DES!),
- \mathbb{Z}_N adder and multiplier for $\log_2 N = 2200$ (“the RSA co-processor”).

In this smart-card context, what would be required to run (ideal) lattice-based cryptography?
The most expensive operation in RLWE-based schemes is computing \(MULADD(a, b, c) \):

\[
a(x) \cdot b(x) + c(x) \mod (q, f(x)).
\]

To reduce its cost, the \(\cdot \) is often computed using the Number Theoretic Transform (NTT).
The most expensive operation in RLWE-based schemes is computing $MULADD(a, b, c)$:

$$a(x) \cdot b(x) + c(x) \mod (q, f(x)).$$

To reduce its cost, the \cdot is often computed using the Number Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for RLWE co-processors have been proposed3.

Yet, new hardware design means having to implement, test, certify, and deploy!

3E.g. [GFS$^+$12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM$^+$14] [CMV$^+$15] [POG15] [RRVV15] [LPO$^+$17]
Our approach: we construct a flexible _MULADD_ gadget by reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with competitive performance on the SLE 78 platform.

Throughout this work we refer to the original NIST PQC’s first round design/parameters of Kyber.
Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in computational algebra for reducing polynomial arithmetic to large integer arithmetic [VZGG13, p. 245][Har09].
Kronecker Substitution

Kronecker Substitution (KS) is a classical technique in computational algebra for reducing polynomial arithmetic to large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate polynomial and integer arithmetic are identical except for carry propagation in the latter.

\[
\begin{align*}
a &= x + 2 \\
b &= 3x + 4 \\
ab &= 3x^2 + 10x + 8
\end{align*}
\]

\[
\begin{align*}
A &= a(100) = 100 + 2 \\
B &= b(100) = 3 \cdot 100 + 4 \\
A \cdot B &= 102 \cdot 304 = 31008 \\
&= 3 \cdot 100^2 + 10 \cdot 100 + 8
\end{align*}
\]

This works if we choose a large enough integer to evaluate \(a\) and \(b\) on. It also works for signed coefficients [Har09].
It also works when evaluating $a(x) \mod f(x)$:

\[
\begin{align*}
 a &= 3x^2 + 10x + 8 \\
 f &= x^2 + 1 \\
 a \mod f &= 3x^2 + 10x + 8 \\
 &\quad - 3(x^2 + 1) \\
 &= 10x + 5
\end{align*}
\]

\[
\begin{align*}
 A &= a(100) = 3 \cdot 100^2 + 10 \cdot 100 + 8 \\
 F &= f(100) = 100^2 + 1 \\
 A \mod F &= 3 \cdot 100^2 + 10 \cdot 100 + 8 \\
 &\quad - 3(100^2 + 1) \\
 &= 1005 = 10 \cdot 100 + 5
\end{align*}
\]
By combining the two properties, and choosing fixed representatives for coefficients in \mathbb{Z}_q, it is possible to compute

$$a(x) \cdot b(x) + c(x) \mod (q, f(x))$$

by

$$a(t) \cdot b(t) + c(t) \mod f(t)$$

where $t \in \mathbb{Z}$ is large enough.

Since these are all integers, we can use our RSA co-processor to compute in $\mathbb{Z}_{f(t)}$!
How should we chose $t = 2^\ell \in \mathbb{Z}$? In [AHH+18], we provide a tight lower bound for correctness.
How should we chose $t = 2^\ell \in \mathbb{Z}$? In [AHH$^+18$], we provide a tight lower bound for correctness.

Let's see, for Kyber768 ($k = 3$, $n = 256$, $q = 7681$, $\eta = 4$)

$$\ell > \log_2 \left(kn \left\lfloor \frac{q}{2} \right\rfloor \eta + \eta + 1 \right) + 1 \approx 24.5 \implies \ell = 25.$$

This means having $\log_2 f(t) = \log_2 f(2^\ell) > \ell \cdot n = 6400$.

Problem: our RSA multiplier computes $x \cdot y \mod z$ where $\log x, \log y, \log z < 2200$.
Splitting rings

- KS alone won’t suffice. We can interpolate between full polynomial multiplication and KS.

- The idea is similar to Schönhage [Sch77] or Nussbaumer [Nus80].
Splitting rings

- KS alone won’t suffice. We can interpolate between full polynomial multiplication and KS.

- The idea is similar to Schönhage [Sch77] or Nussbaumer [Nus80].

- The idea: \[a_0 + a_1 x + \cdots + a_4 x^4 + a_5 x^5 = (a_0 + a_2 y + a_4 y^2) + (a_1 + a_3 y + a_5 y^2) \times \mod (y - x^2). \]

- This technique enables us to compute the Kyber768 MULADD operation by combining Karatsuba-like multiplication of, say, degree 4 in \(x \) with KS for polynomials of degree 64 in \(y \), using \(\ell > 25 \) (we choose \(\ell = 32 \)).
After all this work, we have a MULADD gadget running on an RSA co-processor. Is it worth it in practice?
After all this work, we have a MULADD gadget running on an RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software implementations are way too slow.
After all this work, we have a MULADD gadget running on an RSA co-processor. Is it worth it in practice?

Round 1 Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software implementations are way too slow.

We circumvent this problem by defining an AES-based XOF and PRF, and use SHA256 for the CCA transform’s G and H.

A similar variant was introduced in NIST PQC’s second round Kyber revision as “Kyber-90s”.
Table: Comparison of our work with other PKE or KEM schemes on SLE 78.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Target</th>
<th>Gen</th>
<th>Enc</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyber768<sup>a</sup> (CPA; our work)</td>
<td>SLE 78</td>
<td>3,625,718</td>
<td>4,747,291</td>
<td>1,420,367</td>
</tr>
<tr>
<td>Kyber768<sup>b</sup> (CCA; our work)</td>
<td>SLE 78</td>
<td>3,980,517</td>
<td>5,117,996</td>
<td>6,632,704</td>
</tr>
<tr>
<td>RSA-2048<sup>c</sup></td>
<td>SLE 78</td>
<td>-</td>
<td>(\approx 300,000)</td>
<td>(\approx 21,200,000)</td>
</tr>
<tr>
<td>RSA-2048 (CRT)<sup>d</sup></td>
<td>SLE 78</td>
<td>-</td>
<td>(\approx 300,000)</td>
<td>(\approx 6,000,000)</td>
</tr>
<tr>
<td>Kyber768 (CPA+NTT)<sup>e</sup></td>
<td>SLE 78</td>
<td>(\approx 10,000,000)</td>
<td>(\approx 14,600,000)</td>
<td>(\approx 5,400,000)</td>
</tr>
<tr>
<td>NewHope1024<sup>f</sup></td>
<td>SLE 78</td>
<td>(\approx 14,700,000)</td>
<td>(\approx 31,800,000)</td>
<td>(\approx 15,200,000)</td>
</tr>
</tbody>
</table>

^a CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2 on SLE 78 @ 50 MHz.

^b CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the SHA-256 co-processor to implement \(G\) and \(H\) and KS2 on SLE 78 @ 50 MHz.

^c RSA-2048 encryption with short exponent and decryption without CRT and with countermeasures on SLE 78 @ 50 MHz. Extrapolation based on data-sheet.

^d RSA-2048 decryption with short exponent and decryption with CRT and countermeasures on SLE 78 @ 50 MHz. Extrapolation based on data-sheet.

^e Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation assuming usage of the AES co-processor to implement PRF/XOF and a software implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

^f Reference implementation of constant time ephemeral NewHope key exchange (\(n = 1024\)) [ADPS16] modified to use the AES co-processor as PRNG on SLE 78 @ 50 MHz.
Investigate other schemes:

- ThreeBears [Ham17] (uses only integers, but they are too long for the SLE 78 co-processor) or SABER [DKRV17] (similar design, power-of-two q).

- Try designing a scheme with parameters such that each packed polynomial fits directly into a co-processor register (prime cyclotomic? Kyber with smaller non-NTT-friendly q?).

- Try implementing a signature scheme, e.g. Dilithium.
Final idea:

- LWE-based CPA schemes tolerate some small level of noise added to the ciphertext.
- Maybe we can choose ℓ smaller than what our correctness lower bound requires.
- We could introduce carry-over errors when computing $a \cdot b + c \mod f$.
- If we can bound the error norm, we may still get correct decryption, with smaller packed polynomials.
Thank you

You can find:
- the paper @ https://ia.cr/2018/425
- the code @ https://github.com/fvirdia/lwe-on-rsa-copro
- me @ https://fundamental.domains
<table>
<thead>
<tr>
<th>Scheme</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyber.CPA.Imp.Gen \ (HW-AES: PRF/XOF)</td>
<td>3,625,718</td>
</tr>
<tr>
<td>Kyber.CPA.Imp.Enc \ (HW-AES: PRF/XOF)</td>
<td>4,747,291</td>
</tr>
<tr>
<td>Kyber.CPA.Imp.Dec</td>
<td>1,420,367</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Gen \ (HW-AES: PRF/XOF; SW-SHA3: H)</td>
<td>14,512,691</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Enc \ (HW-AES: PRF/XOF; SW-SHA3: G, H)</td>
<td>18,051,747</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Dec \ (HW-AES: PRF/XOF; SW-SHA3: G, H)</td>
<td>19,702,139</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Gen \ (HW-AES: PRF/XOF; HW-SHA-256: H)</td>
<td>3,980,517</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Enc \ (HW-AES: PRF/XOF; HW-SHA-256: G, H)</td>
<td>5,117,996</td>
</tr>
<tr>
<td>Kyber.CCA.Imp.Dec \ (HW-AES: PRF/XOF; HW-SHA-256: G, H)</td>
<td>6,632,704</td>
</tr>
</tbody>
</table>

Table: Performance of our work on the SLE 78 target device in clock cycles.

High-speed polynomial multiplication architecture for ring-lwe and she cryptosystems.

Saber.

On the design of hardware building blocks for modern lattice-based encryption schemes.

Mike Hamburg.

Three bears.

David Harvey.

Faster polynomial multiplication via multipoint kronecker substitution.

Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on reconfigurable hardware.

T. Pöppelmann and T. Güneysu.
Area optimization of lightweight lattice-based encryption on reconfigurable hardware.

High-performance ideal lattice-based cryptography on 8-bit ATXmega microcontrollers.

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation.

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede.
Compact ring-LWE cryptoprocessor.
In Batina and Robshaw [BR14], pages 371–391.

Arnold Schönhage.
Schnelle multiplikation von polynomen über körpern der charakteristik 2.

Peter W. Shor.
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

Joachim Von Zur Gathen and Jürgen Gerhard.
Modern computer algebra.