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White-Box Threat Model
� Goal: to extract a cryptographic key, · · ·
� Where: from a software impl. of cipher
� Who: malwares, co-hosted applications, user

themselves, · · ·
� How: (by all kinds of means)

I analyze the code
I spy on the memory
I interfere the execution
I · · ·

In theory: no provably secure white-box scheme for standard block ciphers.

2



White-Box Threat Model
� Goal: to extract a cryptographic key, · · ·
� Where: from a software impl. of cipher
� Who: malwares, co-hosted applications, user

themselves, · · ·
� How: (by all kinds of means)

I analyze the code
I spy on the memory
I interfere the execution
I · · ·

In theory: no provably secure white-box scheme for standard block ciphers.
2



Typical Applications
Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element

In practice: heuristic solutions / security through obscurity
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Internal Encoding Countermeasure [SAC02]

X R1
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ε2ε−1
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ε−1
r−1

Y. . .

pairwise annihilating parasitic
functions (e.g. encodings) look-up tables

1. Represent the cipher into a network of transformations

2. Obfuscate the network by encoding adjacent transformations
3. Store the encoded transformations into look-up tables
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Attacks in This Talk

1 � Differential Computation Analysis

2 � Collision Attack
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Differential Computation Analysis [CHES16]

plaintext

ciphertext

gray-box model

side-channel leakages (noisy)
e.g. power/EM/time/· · ·

plaintext

ciphertext

white-box model

computational leakage (perfect)
e.g. registers/accessed memory/· · ·
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Differential Computation Analysis [CHES16]

Differential power analysis techniques on computational leakages

group by predictionscollect traces

ϕk(·) = 0

ϕk (·) = 1

average trace differential trace

Implying strong linear correlation between the sensitive vari-
ables and the leaked samples in the computational traces.
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DCA Attack Limitations

1. The seminal work [CHES16] lacks in-depth understanding of DCA
2. The follow-up analysis [ACNS18] is

I partly experimental (in particular for wrong key guesses)
I Only known to work on nibble encodings
I Only known to work on the first and last rounds
I Success probability is unknown

3. The computational traces are only sub-optimally exploited
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Internal Encoding Leakage

x ϕk(·) s

input sensitive variable

n m
ε(·) v

intermediate variable

mm

� A key-dependent (n,m) selection function ϕk in a block cipher
� A random selected m-bit bijection ε
� ε ◦ ϕk , as a result of some table look-ups, is leaked in the memory

� To exploit the leakage of ε ◦ ϕk , it is necessary that n > m
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DCA Analysis
Based on well-established theory – Boolean correlation, instead of dif-
ference of means: for any key guess k

ρk = Cor
(

ϕk(·)[i ]

,

ε ◦ ϕk∗(·)[j]

)

ϕk(·) ε(·)

DCA success (roughly) requires:∣∣ρk∗
∣∣ > max

k×

∣∣ρk×
∣∣
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ρk∗ and ρk×: Distributions
� Ideal assumption:

(
ϕk
)

k
are mutually independent random (n,m) functions

Correct key guess k∗,

ρk∗ = 22−mN∗ − 1

where

N∗ ∼ HG(2m, 2m−1, 2m−1) .

Only depends on m.

Incorrect key guess k×,

ρk× = 22−nN× − 1

where

N× ∼ HG(2n, 2n−1, 2n−1) .

Only depends on n.

ϕk(·) ε(·)
n m m
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Lemma
Lemma

Let B(n) be the set of balanced n-bit Boolean function. If f ∈ B(n) and g $←− B(n)
independent of f , then the balanceness of f + g is B(f + g) = 4 · N − 2n where
N ∼ HG(2n, 2n−1, 2n−1) denotes the size of {x : f (x) = g(x) = 0}.

With
Cor(f + g) = 1

2n B(f + g)

⇒
ρk∗ = 22−mN∗ − 1 and ρk× = 22−nN× − 1

where N∗ ∼ HG(2m, 2m−1, 2m−1) and N× ∼ HG(2n, 2n−1, 2n−1) .
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ρk∗ and ρk×: Distributions
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DCA Success Rate: |ρk∗| > maxk× |ρk×|
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n

Pr
( |ρ k∗

|>
m

ax
k×
|ρ

k×
|) m = 4

DCA success probability converges towards ≈ 1− PrN∗
(
2m−2) for n ≥ 2m + 2.
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Attack a NSC Variant: a White-Box AES
� Byte encoding protected
� DCA has failed to break it before this work

� Our approach: target a output byte of MixColumn in the first round

X1

X2

0

0

ARK,SB SR MC

ϕk1||k2(x1||x2) = 2 · Sbox(x1 ⊕ k1) ⊕ 3 · Sbox(x2 ⊕ k2) ⊕

ε′ = ε ◦ ⊕c ,

n = 16,m = 8 , |K| = 216.
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Attack a NSC Variant: a White-Box AES
� Attack results: ∼ 1800 traces

� Similar attack can be applied to a “masked” white-box implementation,
which intends to resist DCA.
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Attacks in This Talk

1 � Differential Computation Analysis

2 � Collision Attack
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Collision Attack

x1
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x3

x4

N inputs & raw traces

ψk(x1, x2)

ψk(x1, x3)

ψk(x1, x4)

ψk(x2, x3)

ψk(x2, x4)

ψk(x3, x4)

(N
2
)

collision predictions & traces

Cor
(
ψk(·, ·) ,

)

ψk(x1, x2) :=
(
ϕk(x1) = ϕk(x2)

)
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Collision Attack: Explanation
Based on the principle:

ϕk(x1) = ϕk(x2) ⇔ ε ◦ ϕk(x1) = ε ◦ ϕk(x2)

Trace Complexity:

N = O
(
2m

2
)
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Collision Attack: Explanation
Predictions

1 2 3 4 5 6
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y
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k∗ “collides”
∧
∀k×, k∗ and k× are not “isomorphic”

⇒ N = O
(

2 m
2
)
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Attack the NSC Variant
� Same to DCA: targeting at one 1-st round MixColumn output byte

� Attack results: 60 traces
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n k×

k∗
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Conclusion

� DCA against internal encodings has been analysed in depth
I Allows to attack wider encodings

� Computation traces have been further exploited
I Showcase to attack variables beyond the first round of the cipher
I New class of collision attack with very low trace complexity

� Hence, protecting AES with internal encodings in the beginning rounds is
insufficient
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Thank You !
ia.cr/2019/076

https://eprint.iacr.org/2019/076
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