Analysis and Improvement of Differential Computation Attacks against Internally-Encoded White-Box Implementations

Matthieu Rivain ¹ Junwei Wang ^{1,2,3} ¹CryptoExperts ²University of Luxembourg ³University Paris 8

CHES 2019, Atalanta

White-Box Threat Model

- **Goal:** to extract a cryptographic key, · · ·
- Where: from a software impl. of cipher
- **Who:** malwares, co-hosted applications, user themselves, · · ·
- **How:** (by all kinds of means)
 - analyze the code
 - ▶ spy on the memory
 - ▶ interfere the execution
 - ▶ · · ·

White-Box Threat Model

- **Goal:** to extract a cryptographic key, · · ·
- Where: from a software impl. of cipher
- **Who:** malwares, co-hosted applications, user themselves, · · ·
- **How:** (by all kinds of means)
 - ► analyze the code
 - ▶ spy on the memory
 - ▶ interfere the execution
 - ► • •

In theory: no provably secure white-box scheme for standard block ciphers.

Typical Applications

Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a *secure element*

Typical Applications

Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a *secure element*

Internal Encoding Countermeasure [SAC02]

1. Represent the cipher into a *network* of transformations

Internal Encoding Countermeasure [SAC02]

- 1. Represent the cipher into a *network* of transformations
- 2. Obfuscate the network by encoding adjacent transformations

Internal Encoding Countermeasure [SAC02]

- 1. Represent the cipher into a *network* of transformations
- 2. Obfuscate the network by encoding adjacent transformations

3. Store the encoded transformations into look-up tables

Attacks in This Talk

Differential Computation Analysis
 Collision Attack

Differential Computation Analysis [CHES16]

gray-box model

side-channel leakages (*noisy*) *e.g.* power/EM/time/····

white-box model

computational leakage (*perfect*) *e.g.* registers/accessed memory/···

Differential Computation Analysis [CHES16]

Differential power analysis techniques on computational leakages

Implying strong *linear correlation* between the sensitive variables and the leaked samples in the computational traces.

DCA Attack Limitations

- 1. The seminal work [CHES16] lacks in-depth understanding of DCA
- 2. The follow-up analysis [ACNS18] is
 - ▶ partly experimental (in particular for wrong key guesses)
 - ► Only known to work on nibble encodings
 - Only known to work on the first and last rounds
 - Success probability is unknown
- 3. The computational traces are only sub-optimally exploited

Internal Encoding Leakage

- A key-dependent (n, m) selection function φ_k in a block cipher
- A random selected m-bit bijection ε
- $\varepsilon \circ \varphi_k$, as a result of some table look-ups, is leaked in the memory
- To exploit the leakage of $\varepsilon \circ \varphi_k$, it is necessary that n > m

Based on well-established theory – *Boolean correlation*, instead of *difference of means*: for any key guess k

$$\rho_{\mathbf{k}} = \operatorname{Cor} \left(\qquad , \qquad \right)$$

Based on well-established theory – *Boolean correlation*, instead of *difference of means*: for any key guess k

$$\rho_{\mathbf{k}} = \operatorname{Cor}\left(\varphi_{\mathbf{k}}(\cdot)[i] , \right)$$

Based on well-established theory – *Boolean correlation*, instead of *difference of means*: for any key guess k

$$\rho_{\mathbf{k}} = \operatorname{Cor}\left(\varphi_{\mathbf{k}}(\cdot)[i] , \varepsilon \circ \varphi_{\mathbf{k}^{*}}(\cdot)[j] \right)$$

Based on well-established theory – *Boolean correlation*, instead of *difference of means*: for any key guess k

$$\rho_{\mathbf{k}} = \operatorname{Cor}\left(\varphi_{\mathbf{k}}(\cdot)[i] , \varepsilon \circ \varphi_{\mathbf{k}^{*}}(\cdot)[j] \right)$$

DCA success (roughly) requires:

$$\left|\rho_{k^*}\right| > \max_{k^{\times}} \left|\rho_{k^{\times}}\right|$$

Ideal assumption: $(\varphi_k)_k$ are mutually independent random (n, m) functions

Ideal assumption: $(\varphi_k)_k$ are mutually independent random (n, m) functions

Correct key guess k^* ,

$$\rho_{k^*} = 2^{2-m} N^* - 1$$

where

$$N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$$
 .

Only depends on m.

Ideal assumption: $(\varphi_k)_{\mu}$ are mutually independent random (n, m) functions

Correct key guess k^* , Incorrect key guess k^{\times} ,

$$\rho_{k^*} = 2^{2-m} N^* - 1$$

$$\rho_{\mathbf{k}^{\times}} = 2^{2-n} N^{\times} - 1$$

where

where

 $N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$.

$$N^{\times} \sim \mathcal{HG}(2^n, 2^{n-1}, 2^{n-1})$$
.

Only depends on m.

Only depends on *n*.

Lemma

Lemma

Let $\mathcal{B}(n)$ be the set of balanced *n*-bit Boolean function. If $f \in \mathcal{B}(n)$ and $g \stackrel{\$}{\leftarrow} \mathcal{B}(n)$ independent of *f*, then the balanceness of f + g is $B(f + g) = 4 \cdot N - 2^n$ where $N \sim \mathcal{HG}(2^n, 2^{n-1}, 2^{n-1})$ denotes the size of $\{x : f(x) = g(x) = 0\}$.

With

$$\operatorname{Cor}(f+g) = \frac{1}{2^n} \operatorname{B}(f+g)$$

 \Rightarrow

$$ho_{k^*} = 2^{2-m} N^* - 1$$
 and $ho_{k^{\times}} = 2^{2-n} N^{\times} - 1$

where $N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$ and $N^{\times} \sim \mathcal{HG}(2^n, 2^{n-1}, 2^{n-1})$.

 ρ_{k^*} and $\rho_{k^{\times}}$: Distributions

DCA Success Rate: $|\rho_{k^*}| > \max_{k^{\times}} |\rho_{k^{\times}}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \ge 2m + 2$.

DCA Success Rate: $|\rho_{k^*}| > \max_{k^{\times}} |\rho_{k^{\times}}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \ge 2m + 2$.

- Byte encoding protected
- DCA has failed to break it *before this work*

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

<i>X</i> ₁		
	X_2	

 x_1

 X_2

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

 $\mathsf{Sbox}(x_1 \oplus k_1)$ $\mathsf{Sbox}(x_2 \oplus k_2)$ $\mathsf{Sbox}(k_3)$ $\mathsf{Sbox}(k_4)$

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

 $\mathbf{Sbox}(x_1 \oplus k_1)$ $\mathbf{Sbox}(x_2 \oplus k_2)$ $\mathbf{Sbox}(k_3)$ $\mathbf{Sbox}(k_4)$

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

 $2 \cdot \operatorname{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \operatorname{Sbox}(x_2 \oplus k_2) \oplus \operatorname{Sbox}(k_3) \oplus \operatorname{Sbox}(k_4)$

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

 $2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2) \oplus \mathbf{c}$

- Byte encoding protected
- DCA has failed to break it *before this work*
- Our approach: target a output byte of MixColumn in the first round

 $\varphi_{k_1||k_2}(x_1||x_2) = 2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2)$

$$arepsilon' = arepsilon \circ \oplus_{m{c}} \; ,$$

 $n = 16, m = 8 \; , |\mathcal{K}| = 2^{16} .$

- Attack results: \sim 1800 traces

Similar attack can be applied to a "masked" white-box implementation, which intends to resist DCA.

Attacks in This Talk

1 Differential Computation Analysis

2 Collision Attack

N inputs & raw traces

Collision Attack

N inputs & raw traces $\binom{N}{2}$ collision predictions & traces

Collision Attack

Collision Attack: Explanation

Based on the principle:

$$\varphi_k(x_1) = \varphi_k(x_2) \quad \Leftrightarrow \quad \varepsilon \circ \varphi_k(x_1) = \varepsilon \circ \varphi_k(x_2)$$

Trace Complexity:

$$N=O\left(2^{\frac{m}{2}}\right)$$

Collision Attack: Explanation

$$k^*$$
 "collides" $\land \forall k^{\times}, k^* \text{ and } k^{\times} \text{ are not "isomorphic"}$
 $\Rightarrow N = O\left(2^{\frac{m}{2}}\right)$

Collision Attack: Explanation

 k^* "collides" $\land \forall k^{\times}, k^* \text{ and } k^{\times} \text{ are not "isomorphic"}$ $\Rightarrow N = O\left(2^{\frac{m}{2}}\right)$

Attack the NSC Variant

Same to DCA: targeting at one 1-st round MixColumn output byte

Attack results: 60 traces

Conclusion

- DCA against internal encodings has been analysed in depth
 - Allows to attack wider encodings
- Computation traces have been further exploited
 - ▶ Showcase to attack variables beyond the first round of the cipher
 - ▶ New class of collision attack with very low trace complexity
- Hence, protecting AES with internal encodings in the beginning rounds is insufficient

Thank You !

ia.cr/2019/076