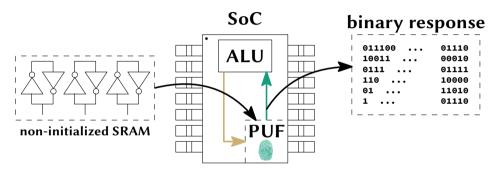
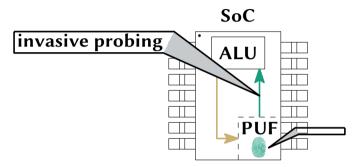

New Insights to Key Derivation for Tamper-Evident Physical Unclonable Functions (PUFs)

Vincent Immler, Karthik Uppund

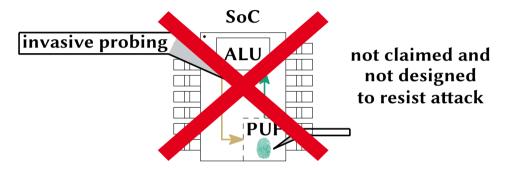

Conference on Cryptographic Hardware and Embedded Systems, Atlanta, Aug 26, 2019

PUF in a Nutshell: Biometrics of Objects


... sounds great! Let's use this in HW crypto!

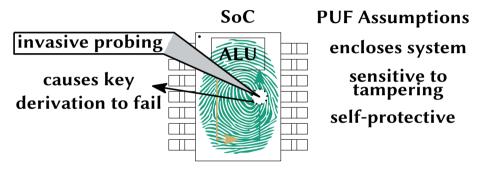
PUF in a Nutshell: Example

key <u>derivation</u> from response instead of key storage! advantages: delayering and optical analysis cannot reveal key disadvantages: noisy response necessitates error-correction


PUFs and Probing (In-)Security

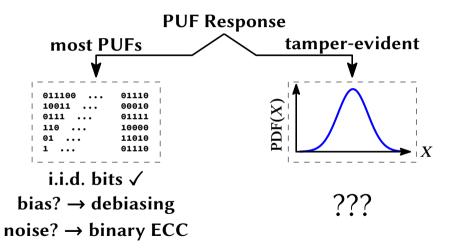
What about other physical attacks?

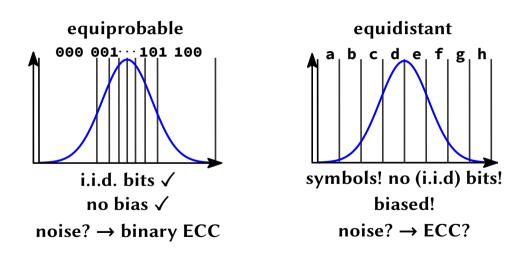
cf. "On the Physical Security of Physically Unclonable Functions" by Shahin Tajik


PUFs and Probing (In-)Security: A Common Misconception

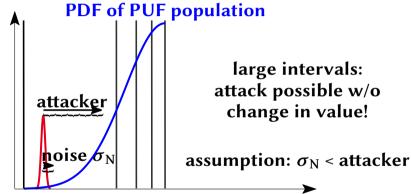
most PUFs ≠ protection from live physical attacks

(they are not tamper-evident, still needed:active meshes and other countermeasures)

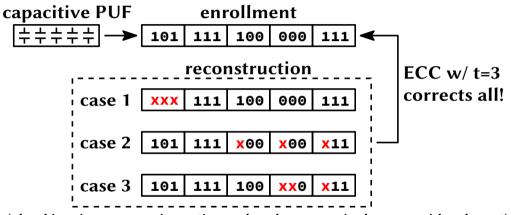

Idea of Tamper-Evident PUFs


tamper-evident PUF = protection from probing attacks

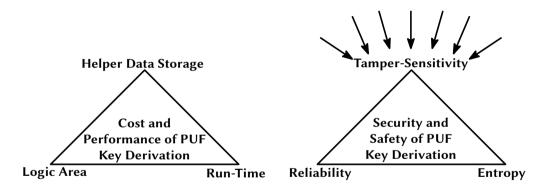
examples: Coating PUF (CHES'06), Waveguide PUF ('15), B-TREPID (HOST'18)


Key Derivation based on Type of PUF

Two Well-Known Quantization Schemes



Equiprobable Quantization: Partial Insensitivity to Attacks


PDF of instance

Missing Selectivity of Binary ECC for Respones w/ Multiple Values

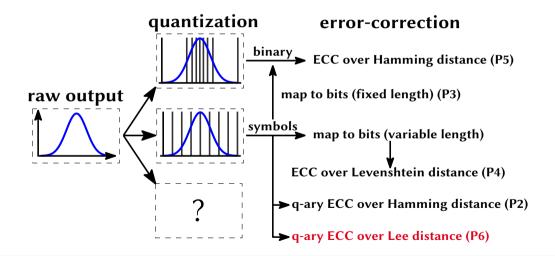
(plus: bit string per capacitor < #intervals \rightarrow large magnitude errors with only t = 1)

Tamper-Sensitivity as High-Level Goal for PUF Key Derivation

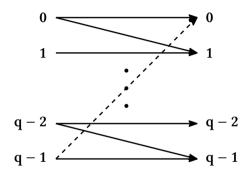
previous work: strong focus on making PUFs small and lightweight different approach needed: make PUFs tamper-evident, large, and secure!

Two Definitions for Fair Comparison of Tamper-Sensitivity

max-TS : Maximum Magnitude Tamper Insensitivity


Defines the maximum magnitude of the attacker that goes undetected (worst-case).

min-TS : Minimum Magnitude Tamper Sensitivity

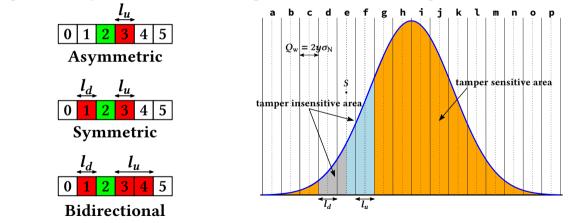

Defines the minimum magnitude of the attacker that is detected (best case).

comparability: express magnitude in multiples of measurement noise σ_N "practically best" physical security for max-TS = min-TS; and close to 1 (equal to σ_N)

Zoo of Key Derivation Options for Tamper-Evident PUFs

P6: q-ary Channel Model and Limited Magnitude Codes (LMC)

wrap-around (dashed + thick) non wrap-around (thick only, <u>use this</u>)


wrap-around (Lee)

$$\begin{split} &d_{\text{Lee}}(x,y) = \min((x-y), q-(x-y)) \\ &d_{\text{Lee}}(0,q-1) = 1 \end{split}$$

non wrap-around (Manhattan) $d_{\text{Lee}}(x, y) = |x - y|$ $d_{\text{Lee}}(0, q - 1) = q - 1$

LMC Types and Result

High selectivity of error correction: magnitude, direction, # of magnitude errors

Results

Profile	y	L	z	ECC(n, t)	$\mathrm{H}^{\mathrm{eff}}_{\infty}$ [bit]	$\stackrel{\mathrm{TS}_{\mathrm{node}}^{\mathrm{max}}}{\left[\sigma_{\mathrm{N}} ight]}$	$\mathrm{TS}_{\mathrm{device}}^{\mathrm{max}} \ [\sigma_{\mathrm{N}}]$	Distance Metric
P1	5.4	8	128	-	267	5.4	692	none
P2	2.3	32	4	RS(31, 7)	122	148	4352	$\mathrm{d}_{\mathrm{H} S}$
P3	3.6	16	5	BCH(127, 2)	265	116	1577	$d_{H 2}$
P4	4.95	12	1	$VT(\cdot, 1)$	276	65	693	d_{Lev}
P5	2.87	8	2	BCH(255, 4)	320	112	2994	$d_{H 2}$
P6	2.1	64	1	LMC(63, 10)	319	6.3	395	d_{Man}

Coating PUF parameters (node = single capacitor; device = all capacitors)

Conclusions and Future Work

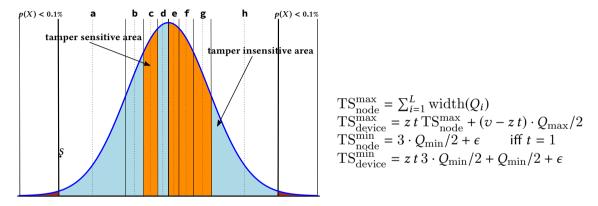
- Tamper-evident PUFs are important for highest physical security
- Physical design and key derivation must be optimized for tamper-sensitivity
- Formalized tamper-sensitivity to better assess PUF key derivation
- Proposed new scheme to overcome previous limitations
- Updated definitions of Uniqueness and Reliability for Lee/Manhatten metric
- Responses based on symbols/higher-order alphabet
 - Benefits of same concept when applied to regular PUFs?
 - Impact of same concept on strong PUFs?
- Future work: investigate better quantization options

Contact Information

Vincent Immler

Central Office for Information Technology in the Security Sector (ZITiS)

For government inquiries only: vincent.immler@zitis.bund.de


All other inquiries: science+ches2019@mm.st

This work was performed while with Fraunhofer Institute AISEC.

Thank You! Questions?

Backup

Profile 5: Equiprobable Quantization + BCH-based Code-Offset

 $\begin{aligned} & \operatorname{grayCode}(0) = 00..0_{\log 2(q)} \\ & \operatorname{graycode}(q-1) = 10..0_{\log 2(q)} \end{aligned}$