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The HTTPS Ecosystem is critical

Services & Applications

Edge " cURL
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Skype

1N

Apache

Nginx

Clients
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HTTPS Ecosystem

 Most widely deployed security protocol?
— 40% all Internet traffic (+40%/year)

 Web, cloud, email, VoIP, 802.1x, VPNs, ...




The HTTPS Ecosystem is complex
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The HTTPS Ecosystem is buggy

» 20 years of attacks & fixes

Services & Applications
Buffer overflows

Memory management Edge || cURL | webkit || skype |[ 11s ]| Apache || Nginx
Incorrect state maChlnes -
Lax certificate parsing Clients Servers

Weakly or badly implemented crypto
Side channels
Error-inducing APIs

Flawed standards Certification | | -
Authority

Many implementations R
OpenSSL, Schannel, NSS, ... E ] 1/
, RSA | SHA le—
Still patched every month! )
@he twashington Post

‘FREAK’ flaw undermines security for Apple
and Google users, researchers discover
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Everest:

Deploying Verified-Secure Implementations
in the HTTPS Ecosystem "~
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Everest Goals

* Fully verified replacement

Services & Applications

* Widespread deployment EdgeJLCURL

Clients

* Trustworthy, usable tools

$ apt-get install verified https
$ /etc/init.d/apache2 restart
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Research Questions

* How do we decide whether new protocols are secure?
— Especially when interoperating with insecure protocols

 Can we make verified systems as fast as unverified?

e How do we handle advanced threats?
— Ex: Side channels

 Why should we trust automated verification tools?

e How can verification be more accessible?
— Especially to non-experts in verification
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Current Status
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prone (due in part to Intel and AMD reporting CPU features

er n
able via a carefully designed APL The API provably supports
agility (choosing between multiple algorithms for the same
functionality) and multiplexing (choosing between multiple im-
the same Through a
of ahstraction and zero-cost generic programming, we show how
agility can simplify verification without sacrificing performance,
and we demonstrate how C and assembly can be composed and
verified against shared specifications. We substantiate the effec-
tiveness of these techniques with new verified implementations (in-
cluding hashes, Curve25519, and AES-GCM) whose performance
matches or exceeds the hest unverified implementations. We
validate the API design with two high-performance verified case
studies built atop EverCrypt, resulting in line-rate performance
for & secure network protocol and a Merkle tree library, used in
a production blockchain, that supports 2.5+ million insertions/sec.
Altogether, EverCrypt consists of over 100K verified lines of
specs, code, and proofs, and it produces over 45K lines of C

istently [67]), with various cryptographic providers
invoking illegal instructions on specific platforms [63], leading
to killed processes and even crashing kemels.

Since a cryplographic provider is the linchpin of most
security-sensitive applications, its correctness and security
are crucial. However, for most applications (e.g., TLS, cryp-
tocurrencies, or disk encryption), the provider is also on the
critical path of the application’s performance. Historically, it
has been notoriously difficult to produce cryptographic code
that is fast, correct, and secure (e.g., free of leaks via side
channels). For instance, OpenSSLs 1iberypto has reported
25 vulnerabilities between May 1, 2016 and May 1, 2019,

Such critical, complex code is a natural candidate for formal

ifi which can mat i guarantee
and security even for complex low-level implementations.




EverCrypt: A Verified
Crypto Provider




Why Verity Crypto?

* Bugs are real, and potentially devastating!
e 24 vulnerabilities in OpenSSL's 1ibcrypto in ~3 years!

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress

all your other poly1305 code paths against a reference implementation.”

These produce wrong results. The first example dffYou know the drill. See the attached poly13@5_test2.c.

the other three also on &4 bit. $ OPENSSL_ia32cap=@ ./polyl1305_test2

PASS
$ ./poly13@5_test2
Poly1385 test failed.

got: 26374081203086ea73f071e342522820
expected: 2637408fel3086ea73f9712342522820

I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.

This was found because a run of our SSL tests happened to find a
B problematic input. I've trimmed it down to the first block where they



Side Channel Challenge (Attacks)

Protocol-level Traffic analysis Timing attacks against Memory & Cache

side channels cryptographic primitives

TLS messages may reveal information Combined analysis of the time and A remote attacker may learn Memory access patterns may expose

about the internal protocol state or the  length distributions of packets leaks information about crypto secrets by secrets, in particular because caching

application data information about the application timing execution time for variousinputs may expose sensitive data (e.g. by

timing)

. Hello message contents (e.g. time ¢ CRIME/BREACH (adaptive chosen ¢ Bleichenbacher attacks against . OpenSSL key recovery in virtual
in nonces, SNI) plaintext attack) PKCS#1 decryption and signatures machines

. Alerts (e.g. decryptionvs. padding ¢ User tracking . Timing attacks against RC4 (Lucky ¢ Cache timing attacks against AES
alerts) . Auto-complete input theft 13)

. Record headers

‘ Bleichenbacher ’ ‘ E_CD_SA ’ BREACH
| Side-channel tllmmg
‘ Vaudenay ’ ‘ AES cache timing leaks in Web

i Tagsize  CRIME  Luckyld DROWN]
Remote timing applications

attacks are practical 1 \
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Current State of the Art: OpenSSL

* Hand-written mix of Perl and assembly
e Customized for 50+ hardware platforms
 Why?

* Performance!

sub BODY_00_15 {
my ($i,%a,$b,%c,$d,$e,$f,8g,%h) = @_;
$code.=<<___ if ($i<16);
#if ARM_ARCH__>=7
@ ldr $t1, [$inpl,#4 @ &4
# 1if $i==15
str $inp, [sp,#17+#/] @ make room for $t4
# endrf
eor $t0,%e,$e,ror# $Sigmal[1]-$Sigmal[0]"
add $a,%$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,%e,ror# $Sigmal[2]-$Sigmal[0] @ Sigmal(e
# ifndef __ARMEB__
rev  $t1.$t1

C mmm
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Features of an Ideal Library (programmer)

e Usable

 preferably in C or ASM, not “exotic” languages

 Comprehensive
* one algorithm per processor generation / bitsize

* Auto-configurable multiplexing
* best algorithm picked automatically
 Agility

* clients deal with a unified API for each family



Features of an Ideal Library (researcher)

* Verifiable
e written in a language amenable to verification

* Programmer productivity
* share as much code as possible / agile

* Auto-configurable
* doesn’t blue-screen with “missing instruction”

* Deep integration
* each implementation verifies against the same spec

* Abstraction
* clients need not know any implementation details

EverCrypt provides a comprehensive verification result
without compromising performance




EverCrypt Internals

EverCrypt mediates between (possibly verified) clients and different implementations
A .
2 P

C client miTLS Merkle trees clients

A
=1

EverCrypt (C) agile, multiplexing library

Vale (ASM) cryptographic providers

EverCrypt Features

- Agility

- same functionality (e.g., hash), multiple algorithms
- Multiplexing

- same algorithm (e.g., SHA2_256), multiple implementations
- Abstraction

- clients verify against a single spec and an abstract footprint



EverCrypt is Comprehensive

Algorithm | C version Targeted ASM version
AEAD
AES-GCM AES-NI + PCLMULQDQ + AVX
Chacha-Poly | yes
High-level APIs
Box yes
SecretBox yes
Hashes
MD5 yes
SHAI yes
SHA2 yes SHA-EXT (for SHA2-224+SHA2-256)
MACS
HMAC yes agile over hash
Poly1305 yes X64
Key Derivation
HKDF yes agile over hash
ECC
Curve25519 | yes BMI2 + ADX
Ed25519 yes
Ciphers
ChaCha20 yes
AES128, 256 AES NI + AVX
AES-CTR AES NI + AVX




Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

A

Verified Applications

18



Cryptographic Implementation Reguirements

Difficult to meet all three goals.

Correct Secure Fast
Formally prove that Correct control flow Platform-agnostic
Implementation and free from leakage & platform-specific
matches specification and side channels optimizations

DaFnqu WC‘L)Z

19



Result: Crypto implementations usually fall into one of two camps.

Fast but non-verified Verified but slow
crypto implementations crypto implementations

20



Perf gap

80

Implementation

SHA 256 Latency [100 KB data]

Unverified

OpenSSL

Verified - <,
implementations
/

Zinzindohoue
et al.
[ePrint “15]

Appel et al.
[ACM TOPLAS ‘15]



OpenSSL Performance Tricks

Mix of ASM +
Perl A bl g
______ ssembly code
S;b %ODY_O(I)ET\I]S {( _--" is a Perl string
code .= <<
#if  ARM _ARCH_  >=7 « o _
@ Idr $t1,[$inp],#4 ~ o
H#if Si==15 C macros for target
\ Instruction
o selection
#endif’
END \
) o
T C macros for

" -
—_—
_— e e -

code specialization



OpenSSL Performance Tricks

Perl variables for
register names

@V = (4", "15, ‘16", 17", 18", 19", “r10”, “r11”);

for ($i=0; $i<16; $i++) { - e e e Code Iexpansion
&BODY_00_15(%i, @V); using loops
unshift(@V, pop(@V));

} A

\ -
S S Register

-~

= = - selection using
Perl arrays

23



sub BODY_00_15 {

my ($i,$a,$b,$c,$d,$e,$f,$9,5h) = @_;
$code.=<<END if ($i<16);
#if _ ARM_ARCH__ >=7

$t1,[$inp],#4

$inp,[sp,#17*4]

$t0,$e,$e,ror# $Sigmal[1]-$Sigmal[0]’

$a,$a,$t2

$t0,$t0,$e,ror# $Sigmal[2]-$Sigmal[0]’

$t1,$t1

$t1,[$inp,#3]
$a,$a,$t2
$t2,[$inp,#2]
$t0,[$inp,#1]
$t1,$t1,$t2,IsI#8
$t2,[$inp],#4
$t1,$t1,$t0,Isl#16

$inp,[sp,#17*4]

$t0,$e,$e,ror# $Sigmal[1]-$Sigmal[0]

$t1,$t1,$t2,Isl#24

$t0,$t0,$e,ror# $Sigmal[2]-$Sigmal[0] @

@ Idr
#if $i==15
str
# endif
eor
add
eor
#ifndef _ ARMEB___
rev
# endif
#else
@ Idrb
add
Idrb
Idrb
orr
Idrb
orr
#if $i==15
str
# endif
eor
orr
eor
Sigmal(e)
#endif

END

Result: Code becomes difficult to
understand, debug, and formally
verify for correctness and security.

24



Vale: A Firmer Foundation

Flexible framework for writing high-performance,
proven correct and secure assembly code.

o o

Correct Secure Fast

o

25



Vale: A Firmer Foundation

Flexible framework for writing high-performance,
proven correct and secure assembly code.

Flexible Syntax High Performance High Assurance
Vale supports constructs Code generated by Vale Vale can be used to prove
for expressing functionality matches or exceeds functional correctness and

as well as optimizations. OpenSSL’s performance. correct information flow.

26



Key Language Constructs in Vale

Assembly
Instructions

e.g. Mov, Rev, and
AesKeygenAssist

Vary according to
the target platform

Structured
Control Flow

e.g. if, while,
and procedure

Enable proof
composition

Optimization
Constructs

Customize code
generation

27



Optimization Using inline If Statements

Vale supports inline if statements, which are evaluated
during code generation, not during code execution.

Useful for selecting instructions and for unrolling loops.

Target Instruction Selection Loop Unrolling
(Platform-dependent optimization) (Platform-independent optimization)
inline if(platform == x86_AESNI) { inline if (n > 0) {

} recurse(n - 1);

}

28



Example Vale Code

Example
Vale Code

procedure Incr_By N(inline n:nat) {
inline if (n > 0) {
ADD(r5, r5, 1);
Incr_By N(n - 1);
}
}

Incr_By N(100);

29



Example Vale Code

procedure Incr_By N(inline n:nat) {
inline if (n>0) {
ADD(r5, r5, 1);
Incr_By N(n - 1);

}
}

Incr_By N(100);

—)

ADD(r5, 15, 1)
ADD(r5, 15, 1)
ADD(r5, 15, 1)
ADD(r5, 15, 1)

Total 100 ADD
instructions

30



Example Vale Code

Example Generated

Vale Code Assembly Code
procedure Incr_By N(inline n:nat) { add r5,r5, 1
inline if (n > 0) { add r5, 15, 1
ADD(r5, r5, 1); add r5,r5, 1
Incr By N(n - 1): ) add r5, 15, 1

}

}
Total 100 ADD

Incr_By N(100); instructions

31



Cryptographic Implementation Reguirements

Fast

Code generated by
Vale matches or
exceeds OpenSSL’s
performance.

32



Cryptographic Implementation Reguirements

Correct



Crypto code in
Vale language

Lemmas

Crypto
Specification

\ 4

! Machine
Semantics
(x86, x64, ARMvV7)

Vale Architecture

Vale Tool

AST +
Proofs

Proof Assistant

l

Verified?
(Yes / No)

34



Vale Architecture

Crypto code in

Vale language Vale Tool
Lemmas AST +
Proofs
Crypto -
Specification F* Verifier
| ) > (based on Z3
Machl_ne solver)
Semantics
(x86, x64, ARMV7) l
Verified?

(Yes / No)

Or any other proof assistant
e.g. Coqg, ACL2, Lean,
Dafny

35



Vale Architecture

Crypto code in

Vale Tool
Vale language
Lemmas AST +
Proofs
Crypto S - AST
Specification \ (bz*s\ésfg:]eé?) —  Assembly Printer
I - -
Machine solver)
Semantics l észembly
(x86, x64, ARMV7) l oee
N Assembler
Verified? (e.g. GAS / MASM)

(Yes / No)

36



Untrusted

Crypto code in

Component Vale Tool D E—
~ Vale language
Lemmas —
CO"r‘: ”O":]:m AST + Handwritten
E Proofs ‘ Libraries
Crypto - Y » ¥
Specification F* Verifier —  Assembly Printer
I : > (based on Z3
Machl_ne solver)
Semantics l
(x86, X64, ARMV7) l
o Assembler
Component Verified? (e.g. GAS / MASM)
S (Yes / No) 37
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What is it like to verify software?

Demo!



Cryptographic Implementation Reguirements

Correct

Vale supports
assertions that are
checked by F*

39



Cryptographic Implementation Reguirements

Secure
(Leakage Free)

40



Secret Information Leakage

Secrets should not leak through:

- Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

=> Residual Program State: Secrets left in registers or memory after
termination of program

41



Secret Information Leakage

Secrets should not leak through:

- Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

Secret Public
v Input Input
Should )7
NOT be ,/
correlatedll Crypto Program
/ ‘

Side Channel l
e Observations Output

42



Information Leakage Specification

Secret #1

Public Inputs

Based on Non-
Interference

Secret #2

1

Crypto Program

Digital Side
Channel
Observations #1

1

Crypto Program

Digital Side
Channel
Observations #2

43



Information Leakage Specification

Based on Non-
Interference

Formally, for a crypto program C,

V pairs of secrets s, and s,
V public values p,
obs(C, p, s1) = obs(C, p, s2)



Solution: Verified Analysis

AST

| ,
v

AST
Analyzer

(in F*)

Proof
Trustworthy Output
(because of proof) \ |

N Specification
S Output A

-
-~

7’

~ ~-71Yes / No) A

~

—

_ One-Time
Verification

_ Trusted but
succinct

45



Verified Leakage Analysis

AES AST / Poly-1305 AST / SHA-256 AST / ...

l

Verified
Leakage
Analyzer

|

Leakage
Free?
(Yes / No)

46



Problems Caused by Aliasing

store [rbx] < O
store [rax] <— 10
load rcx < [rbx]

Does rcx contain O or 107?

Difficult to answer without knowing whether rax = rbx.

47



Alias Analysis Is a Difficult Problem

Existing alternatives:

1. Analyze source code in a high level language
But compiler may introduce new side channels

2. Implement pointer analysis for assembly code
But analysis will be imprecise

3. Assume no aliases
But this is an unsafe assumption.

Vale is uniquely suited to use a different approach:

Reuse developer’s effort from proof of correctness.

48



Reusing Effort from Proof of Correctness

Functional verification requires precisely identifying information flow.

Specification Implementation

store [rbx] <— O
‘output’ should

be equal to 0 store [rax] <— 10

load output < [rbx]

To prove that output = 0 and not 10, developer should prove that rax # rbx.

49



Lightweight Annotations for Memory Taint

Vale requires the developer to mark memory operands that contain secrets:

load rax < [rdX] @secret

Easy for developer since proving correctness requires identifying all information
flows.

Since these annotations are checked by the verifier, they are untrusted.

50



Cryptographic Implementation Reguirements

Secure

Vale checks for
leakage via state and
digital side channels.



Examples of Using Vale

A few examples of the many cryptographic programs verified in Vale:

1. SHA-256 on ARMv7 (ported from OpenSSL) Discovered leakage on stack.

2. Poly1305 on x64 (ported from OpenSSL) Confirmed a previously known bug.

3. SHA-256 on x86

4. AES-CBC and AES-GCM (with AESNI) on x64

After fixing the issues, all programs were proved correct and secure using Vale.

52



Key Lessons

1. Vale’s specifications + lemmas were reusable across
platforms (x86, x64, ARM).

2. Porting OpenSSL’s Perl tricks required understanding and
proving invariants.

Some of OpenSSL’s optimizations were automatically
proved by the verifer.



Verification Effort

In person-months

Tool Development

——

Vale Leakage Analysis AES CBC | Polyl1305 | 1st SHA | SHA Port

12 6 5 0.5 6 0.75

N ——— —

Crypto Implementations




Vale Summary

e Vale is a framework for generating and verifying crypto implementation that
IS correct, secure, and fast for arbitrary architectures.

e Vale's flexible syntax allows writing assembly code that OpenSSL

expresses using ad-hoc Perl scripts, C preprocessor macros, and custom
interpreters.

e Vale supports verified analysis of code, e.g., information leakage analysis.

55



Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

o ok~ W Mo

Verified Applications
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Verified C With the HACL* Architecture

HACL*

E* High-level ~ Optimized stateful Low*

specifications ~w code (subset of F*)

Functionally
— equivalent —
F* compiler u u KreMLin
OCam| C library
executable

@ GCC, CompCert, Clang

Assembly
code

57



HACL* SHA example

// F* code
let Chxyz=
H32.logxor (H32.logand x y)
(H32.logand (H32.lognot x) z)

let shuffle_core hash block ws k t = // C code
let e = hash.(4ul) in
let f = hash.(5ul) in
let g = hash.(6ul) in

uint32_t e = hash_0[4];
uint32_t f1 = hash_0[5];
uint32_t g = hash_0[6];

lettl=..(Chefg)..in

. uint32 ttl= ..(e &fl*~e & g)..;
lett2 =...in

uint32 tt2=..;




Verified Interoperation
Between C and Assembly

* Low* can be extracted to C
* \ale verifies assembly code
* We verifiably interoperate between C and assembly

* Challenges:
— Different memory models
— Calling conventions vary based on hardware, OS, compiler
— Different security mechanisms for preventing side channels



Verified Interoperation
Between C and Assembly

e Reconciling Memory
— A map from the Low™ memory model to Vale’s
— Alibrary of views that capture the layout of arrays

e Calling Conventions

— A generic trusted wrapper sets up the initial register state

— A combinator captures that a Vale procedure (mem -> mem) can
“morally” be executed with a suitable effect when in Low*

* Security
— (Paper) proof unifying sequences of Low* and Vale observations



Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

o kA Wb E

Verified Applications



llustrate crypto
construction verification
on TLS 1.3 record layer

» Security definition

New constructions
 Concrete security bounds
« Verification

Symmetric Cryptography

AES128

Chacha2

GHASH

Poly1305

Cipher

IND-
PRF

AEAD

Encryption

TLS record
protection

Legend:

Verified by typing

Crypto assumption

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

/ Record Layer

Protection



StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
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Stream Encryption: Security Definition
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Stream Encryption: Security Definition
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Encrypting a fragment QSR BENRCS
with ChaCha20 Poly1305 block 1 block n

64 bytes < 64 bytes
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lengths of
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One-time MAC key

16 bytes , One-time MAC pad




Stream Encryption: Construction

Given
« a block cipher, modelled as
a pseudo-random function

- a field for computing one-time MACs
« injective message encodings

We program and verify a generic
authenticated stream encryption
with associated data.

We show
- functional correctness
« security (reduction to PRF assumption)

-« concrete security bounds for the
3 main record ciphersuites of TLS

functional correctness
(low-level assembly)

many kinds of proofs
not just code safety!

arithmetic correctness
(field computations)

AES128 Chacha20

GHASH Poly1305

CBC

AES256
AES

Cipher

IND-
PRF

AEAD

abstraction
1-Time MAC & aglllty

INDACMA | security
idealization

AEAD.Encoding oo ..
tnjectivity

AEAD.Invariant

A

Stream
Encryption

loops & stateful invariants
(reasoning on ideal logs)

v
LHA/
I\/

TLS record
protection

v

TLS API

v

TLS FFI

TLS-specific mechanisms

fragmentation

content multiplexing
length-hiding, padding
re-keying

O-RTT, 0.5-RTT
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Stream Encryption: Concrete Bounds

Theorem: the 3 main AEAD ciphersuites are

secure for TLS 1.2 and 1.3 except with
probabilities

Ciphersuite €Lhse (A[qe, qa]) <

General bound

eprf(Blge(1 + [(2° + 1)/6]) + qa + Jo))
+ (':MMacl(C[21 + 1+ 461 qd, qe + qd])

Chcnad | ae(ela (1457 ) 4o + 30
oly
2

AES128-GCM | eprp(Blqv)) + 5155 + 5345
AES256-GCM

where gy = ge(1 + [(2" + 1)/16]) + ga + 1
AES128-GCM | 455 (eprp(B[2°%°]) + 550 + 355)
AES128-GCM

with re-keying every 22%°

records (counting

qp for all streams, and g < 260 per stream)

q. s the number of encrypted records;
qa [s the number of chosen-ciphertext decryptions;
qp s the total number of blocks for the PRF

Probabilistic proof

Standard (on paper) in abstract
crypto field + F* verification
assumption
% EMMacl — d.T.qy
EPrf | R|
IND-1CMA
IND-
PRF
AEAD.Encoding
AEAD AEAD.Invariant
Stream
Encryption
€Lhse (A[Qe ; Qd] )
— C€Prf €MMacl

F* type-based verification on code
formalizing game-based reduction
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Abstract, Agile Specifications

« One key challenge in SMT-backed software
verification: the context

» Introducing abstractions is essential, even at
the level of the specs

val compress:
a:sha_alg -> state a -> bytes -> state a

Spec.SHAZ2 fsti

Implements

Spec.SHA2 fst * Agile specifications limit code duplication!
« Abstract specifications tame context prolifera

This maximizes spec compactness



Generic Programming + Partial

Fvaluation
This is not Low™:

val compress:
a:sha alg » state a » array u8 » Stack unit

Reason- let state a = function
’ | SHA2 224 | SHA2 256 -> array u32
| SHA2 384 | SHA2 512 -> array u64

This could be compiled as a union.
However, this is not idiomatic or
efficient.

Instead, we rely on partial evaluation: let compress_224 = compress SHA2_224
let compress 256 compress SHA2 256

let compress 384 compress SHA2 384
let compress 512 = compress SHA2 512



Connecting Vale and HACL* for
Implementation Multiplexing

let multiplexed compress blocks sha2 256
(s: state SHA2 256)
(blocks: array u8)

(n: u32)

if StaticConfig.has vale && AutoConfig.has shaext then
Vale.Interop.SHA2.compress 256 s blocks n

else
Hacl.SHA2.compress 256 s blocks n

This uses static and dynamic configuration
* On the Low* side:

extern void Vale Interop SHA2 compress256(uint32 *s, uint8 *blocks, uint32 n)

 On the Vale side:

.text
.global Vale Interop SHA2 compress256

Vale_Interop_SHA2 compress256:



Unified Specifications

« From the client’s perspective, the algorithmic
specification remains the same

* [t is now agile between all algorithms from a
given family

- The specification abstraction ensures no
context pollution occurs

» The library can serve as a foundation for
higher-level constructions
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Veritied Applications

Using EverCrypt as a foundation, we built
advanced functionalities, such as:

- HMAC

- HKDF

- Merkle trees

- QUIC packet encryption

Fach functionality offers a new layer of
abstraction to further shield its clients from large
contexts.

Relying on EverCrypt, each is naturally agile and
multiplexing.



Example: Merkle trees

« Incremental tree construction

 Each insert requires 1 hash, on average

 Proven:

« Functionally correct
 Cryptographically secure Merkle root (r)

New Merkle root (r')

*e hn

AR -




EverCrypt: Performance




High-Level Summary:

FverCrypt matches or exceeds the
performance of state-of-the art
(verified or unverified)
implementations!



Performance: SHA-256
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Performance: AEAD

Average 3 | | | | | | | | |
| I:? EverCrypt ]
cycles/ y;:% (targeted) —
' OpenSSL
(targeted)
2 L
L5
1 .
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0
AES128 AES256 Chacha20 AES128 AES256 Chacha20 AES128 AES256 Chacha20
GCM GCM  Poly1305 GCM GCM  Poly1305 GCM GCM  Poly1305
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Message size [bytes]



Performance: Curve25519

donna64
flat-crypto
amd64-64

sandy2x

EverCrypt (portable)
OpenSSL

Oliveira et al.

EverCrypt (targeted)

Assembly
Assembly + AVX
C
Assembly + ADX

Assembly + ADX

C + Assembly +
ADX

Unverified
Verified

159634
145248
143302
135660
135636
118604
115122

113614




Performance: Merkle tree

Average 3 106
insertions/sec

2.5x10°

2x10°

Bitcoin’s implementation: 950K ins/sec

EverCrypt is 2.8x faster!

Ik 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k

Tree size [# nodes]



summary

* Crypto software must be fast and secure

* New verification tools & techniques make this possible
— EverCrypt provides verified secure, agile, high-perf crypto

* Everest will showcase the power of verification and its
applicability to real-world security problems

https://project-everest.github.io/

Thank you!

parno@cmu.edu
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