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The HTTPS Ecosystem is critical

• Most widely deployed security protocol?

– 40% all Internet traffic (+40%/year)

• Web, cloud, email, VoIP, 802.1x, VPNs, …

Services & Applications

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

HTTPS Ecosystem
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The HTTPS Ecosystem is complex

***

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Certification 
Authority

100+ pages!

OpenSSL

TLS Protocol
40K SLOC

Crypto

C
160K 
SLOC

Asm
150K 
SLOC

BoringSSL

TLS Protocol
30K SLOC

Crypto

C
100K 
SLOC

Asm
60K 

SLOC
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The HTTPS Ecosystem is buggy
• 20 years of attacks & fixes

Buffer overflows
Memory management
Incorrect state machines
Lax certificate parsing
Weakly or badly implemented crypto
Side channels
Error-inducing APIs
Flawed standards
…

• Many implementations
OpenSSL, Schannel, NSS, …

Still patched every month!

***

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification 

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge



Everest:

Deploying Verified-Secure Implementations 
in the HTTPS Ecosystem
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Everest Goals
• Fully verified replacement

• Widespread deployment

• Trustworthy, usable tools

***

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification 

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

$ apt-get install verified_https

$ /etc/init.d/apache2 restart 



Research Questions

• How do we decide whether new protocols are secure?
– Especially when interoperating with insecure protocols

• Can we make verified systems as fast as unverified?

• How do we handle advanced threats?
– Ex: Side channels

• Why should we trust automated verification tools?

• How can verification be more accessible?
– Especially to non-experts in verification
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Poly1305

Current Status
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EverCrypt: A Verified 
Crypto Provider

***
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Why Verify Crypto?
• Bugs are real, and potentially devastating!

• 24 vulnerabilities in OpenSSL’s libcrypto in ~3 years!

“These produce wrong results. The first example does so only on 32 bit,

the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be

dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress

all your other poly1305 code paths against a reference implementation.”



Side Channel Challenge (Attacks)

2000     …      2006             2007              2008              2009              2010              2011              2012 2013              2014

Protocol-level
side channels

Traffic analysis Timing attacks against 
cryptographic primitives

Memory & Cache

TLS messages may reveal information 
about the internal protocol state or the 
application data

Combined analysis of the time and 
length distributions of packets leaks 
information about the application

A remote attacker may learn 
information about crypto secrets by 
timing execution time for various inputs

Memory access patterns may expose 
secrets, in particular because caching 
may expose sensitive data (e.g. by 
timing)

• Hello message contents (e.g. time 
in nonces, SNI)

• Alerts (e.g. decryption vs. padding 
alerts)

• Record headers

• CRIME/BREACH (adaptive chosen 
plaintext attack)

• User tracking
• Auto-complete input theft

• Bleichenbacher attacks against 
PKCS#1 decryption and signatures

• Timing attacks against RC4 (Lucky 
13)

• OpenSSL key recovery in virtual
machines

• Cache timing attacks against AES

AES cache timing

Bleichenbacher

CRIME Lucky13 DROWN

Remote timing 
attacks are practical

BREACH

Tag size

Side-channel 
leaks in Web 
applications

ECDSA 
timing

Vaudenay



• Hand-written mix of Perl and assembly

• Customized for 50+ hardware platforms

• Why?
• Performance!

Current State of the Art: OpenSSL



Features of an Ideal Library (programmer)

• Usable
• preferably in C or ASM, not “exotic” languages

• Comprehensive
• one algorithm per processor generation / bitsize

• Auto-configurable multiplexing
• best algorithm picked automatically

• Agility
• clients deal with a unified API for each family



Features of an Ideal Library (researcher)

• Verifiable
• written in a language amenable to verification

• Programmer productivity
• share as much code as possible / agile

• Auto-configurable
• doesn’t blue-screen with “missing instruction”

• Deep integration
• each implementation verifies against the same spec

• Abstraction
• clients need not know any implementation details

EverCrypt provides a comprehensive verification result 
without compromising performance



Low* (C) Vale (ASM)

EverCrypt (C)

miTLS Merkle treesC client

cryptographic providers

agile, multiplexing library

clients 

EverCrypt mediates between (possibly verified) clients and different implementations

EverCrypt Features
- Agility

- same functionality (e.g., hash), multiple algorithms
- Multiplexing

- same algorithm (e.g., SHA2_256), multiple implementations
- Abstraction

- clients verify against a single spec and an abstract footprint

EverCrypt Internals



EverCrypt is Comprehensive
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Talk Overview
1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications



Cryptographic Implementation Requirements
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Difficult to meet all three goals.

Correct control flow 

and free from leakage 

and side channels

Fast

Platform-agnostic

& platform-specific

optimizations

Correct

Formally prove that 

implementation

matches specification

Secure
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Verified but slow

crypto implementations

Fast but non-verified 

crypto implementations

Result: Crypto implementations usually fall into one of two camps.



Time
(usec)

Perf gap

Verified

implementations

Unverified

implementation

OpenSSL Zinzindohoue

et al.

[ePrint ‘15]

Appel et al.

[ACM TOPLAS ‘15]

Time
(usec)

SHA 256 Latency [100 KB data]



sub BODY_00_15 {

$code .= <<END

#if __ARM_ARCH__>=7

@ ldr $t1,[$inp],#4

#if $i==15

...

#endif

END

}
C macros for

code specialization

C macros for target 

instruction 

selection

OpenSSL Performance Tricks

22

Assembly code

is a Perl string

Mix of ASM + 

Perl



@V = (“r4”, “r5”, “r6”, “r7”, “r8”, “r9”, “r10”, “r11”);

for ($i=0; $i<16; $i++) {

&BODY_00_15($i, @V);

unshift(@V, pop(@V));

}

Perl variables for 

register names

OpenSSL Performance Tricks

Code expansion 

using loops

Register 

selection using 

Perl arrays
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sub BODY_00_15 {

my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;

$code.=<<END if ($i<16);

#if __ARM_ARCH__>=7

@ ldr $t1,[$inp],#4

# if $i==15

str $inp,[sp,#17*4]

# endif

eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`

add $a,$a,$t2

eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]`

# ifndef __ARMEB__

rev $t1,$t1

# endif

#else

@ ldrb $t1,[$inp,#3]

add $a,$a,$t2

ldrb $t2,[$inp,#2]

ldrb $t0,[$inp,#1]

orr $t1,$t1,$t2,lsl#8

ldrb $t2,[$inp],#4

orr $t1,$t1,$t0,lsl#16

# if $i==15

str $inp,[sp,#17*4]

# endif

eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`

orr $t1,$t1,$t2,lsl#24

eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ 

Sigma1(e)

#endif

END

24

Result: Code becomes difficult to 

understand, debug, and formally 

verify for correctness and security.



Flexible framework for writing high-performance,

proven correct and secure assembly code.

Vale: A Firmer Foundation

25

Correct Secure Fast



Flexible Syntax

Vale supports constructs 

for expressing functionality 

as well as optimizations.

High Assurance

Vale can be used to prove 

functional correctness and 

correct information flow.

High Performance

Code generated by Vale

matches or exceeds 

OpenSSL’s performance.

Flexible framework for writing high-performance,

proven correct and secure assembly code.

26

Vale: A Firmer Foundation



Key Language Constructs in Vale
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Structured

Control Flow

e.g. if, while,

and procedure

Enable proof

composition
Vary according to

the target platform

Assembly

Instructions

e.g. Mov, Rev, and 

AesKeygenAssist

Optimization

Constructs

Customize code

generation



Optimization Using inline if Statements

Vale supports inline if statements, which are evaluated

during code generation, not during code execution.

Useful for selecting instructions and for unrolling loops.

inline if(platform == x86_AESNI) {

...

}

Target Instruction Selection

(Platform-dependent optimization)

inline if (n > 0) {

...

recurse(n - 1);

}

Loop Unrolling

(Platform-independent optimization)

28
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Example

Vale Code

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code



ADD(r5, r5, 1)

ADD(r5, r5, 1)

ADD(r5, r5, 1)

ADD(r5, r5, 1)

...

Total 100 ADD

instructions
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Example

Vale Code

Expanded

Vale AST

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code



add r5, r5, 1

add r5, r5, 1

add r5, r5, 1

add r5, r5, 1

...

Total 100 ADD

instructions
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Example

Vale Code

Generated

Assembly Code

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code



Code generated by 

Vale matches or 

exceeds OpenSSL’s 

performance.

Cryptographic Implementation Requirements

32

Fast



Cryptographic Implementation Requirements

Correct

33

Fast

Code generated by 

Vale matches or 

exceeds OpenSSL’s 

performance.



Proof Assistant

Vale Architecture
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Vale Tool

AST +

Proofs

Crypto 

Specification

Verified?

(Yes / No)

Crypto code in

Vale language

Lemmas

Machine 

Semantics

(x86, x64, ARMv7)



F* Verifier

(based on Z3 

solver)

Vale Architecture
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Vale Tool

AST +

Proofs

Crypto 

Specification

Verified?

(Yes / No)

Crypto code in

Vale language

Lemmas

Machine 

Semantics

(x86, x64, ARMv7)

Or any other proof assistant

e.g. Coq, ACL2, Lean, 

Dafny



Vale Architecture
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Vale Tool

AST +

Proofs

Crypto 

Specification

Crypto code in

Vale language

Lemmas

Assembly Printer

Assembly

Code

Assembler

(e.g. GAS / MASM)

AST

Machine 

Semantics

(x86, x64, ARMv7)

Verified?

(Yes / No)

F* Verifier

(based on Z3 

solver)
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Vale Tool

AST +

Proofs

Machine 

Semantics

(x86, x64, ARMv7)

Crypto 

Specification

Crypto code in

Vale language

Lemmas

Assembly Printer

Assembler

(e.g. GAS / MASM)

Handwritten

Libraries

Trusted

Component

s

Verified

Component

s

Untrusted

Component

s

Verified?

(Yes / No)

F* Verifier

(based on Z3 

solver)
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What is it like to verify software?

Demo!



Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by F*

39

Fast

Code generated by 

Vale matches or 

exceeds OpenSSL’s 

performance.



Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by F*

Secure

(Leakage Free)

40

Fast

Code generated by 

Vale matches or 

exceeds OpenSSL’s 

performance.



Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through

cache usage, timing, memory accesses, etc.

➔ Residual Program State: Secrets left in registers or memory after 

termination of program

Secret Information Leakage

41



Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through

cache usage, timing, memory accesses, etc.

Secret Information Leakage

42

Crypto Program

Secret 

Input

Output

Public 

Input
Should 

NOT be 

correlated

Side Channel 

Observations



Information Leakage Specification

Crypto Program

Secret #1

Digital Side 

Channel 

Observations #1

Crypto Program

Secret #2

Digital Side 

Channel 

Observations #2
43

Public Inputs

=

Based on Non-

Interference



Information Leakage Specification
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Based on Non-

Interference

Formally, for a crypto program C,

∀ pairs of secrets s1 and s2

∀ public values p,

obs(C, p, s1) = obs(C, p, s2)
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AST 

Analyzer

(in F*)

AST

Specification
Output

(Yes / No)

Solution: Verified Analysis

One-Time

Verification

Trustworthy Output 

(because of proof)

Trusted but 

succinct

Proof
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Verified 

Leakage

Analyzer

Leakage 

Free?

(Yes / No)

Verified Leakage Analysis

AES AST / Poly-1305 AST / SHA-256 AST / …



store [rbx] ← 0

load rcx ← [rbx]

store [rbx] ← 0

store [rax] ← 10

load rcx ← [rbx]

Problems Caused by Aliasing

Does rcx contain 0 or 10?

Difficult to answer without knowing whether rax = rbx.

47



Alias Analysis is a Difficult Problem

Existing alternatives:

1. Analyze source code in a high level language 

But compiler may introduce new side channels

2. Implement pointer analysis for assembly code

But analysis will be imprecise

3. Assume no aliases

But this is an unsafe assumption.

Vale is uniquely suited to use a different approach:

Reuse developer’s effort from proof of correctness. 48



Functional verification requires precisely identifying information flow.

Reusing Effort from Proof of Correctness

49

store [rbx] ← 0

store [rax] ← 10

load output ← [rbx]

To prove that output = 0 and not 10, developer should prove that rax ≠ rbx.

‘output’ should 

be equal to 0

Specification Implementation



Vale requires the developer to mark memory operands that contain secrets:

Easy for developer since proving correctness requires identifying all information 

flows.

Since these annotations are checked by the verifier, they are untrusted.

Lightweight Annotations for Memory Taint

50

load rax ← [rdx] @secret



Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by Dafny

Secure

51

Vale checks for 

leakage via state and 

digital side channels.

Fast

Code generated by 

Vale matches or 

exceeds OpenSSL’s 

performance.



Examples of Using Vale

A few examples of the many cryptographic programs verified in Vale:

1. SHA-256 on ARMv7 (ported from OpenSSL)

2. Poly1305 on x64 (ported from OpenSSL)

3. SHA-256 on x86

4. AES-CBC and AES-GCM (with AESNI) on x64

After fixing the issues, all programs were proved correct and secure using Vale.

Discovered leakage on stack.

Confirmed a previously known bug.

52



1. Vale’s specifications + lemmas were reusable across 

platforms (x86, x64, ARM).

2. Porting OpenSSL’s Perl tricks required understanding and 
proving invariants.

Some of OpenSSL’s optimizations were automatically 

proved by the verifer.

Key Lessons

53



Vale Leakage Analysis AES CBC Poly1305 1st SHA SHA Port

12 6 5 0.5 6 0.75

54

Verification Effort
In person-months

Tool Development

Crypto Implementations



Vale Summary

● Vale is a framework for generating and verifying crypto implementation that 

is correct, secure, and fast for arbitrary architectures.

● Vale’s flexible syntax allows writing assembly code that OpenSSL 

expresses using ad-hoc Perl scripts, C preprocessor macros, and custom 

interpreters.

● Vale supports verified analysis of code, e.g., information leakage analysis.

55
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Talk Overview
1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications



Verified C With the HACL* Architecture

High-level
specifications

Optimized stateful
code≈

Functionally
equivalent

Low* 
(subset of F*)

C library

GCC, CompCert, Clang

OCaml
executable

KreMLinF* compiler

Assembly
code

F*

HACL*
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HACL* SHA example

// F* code
let _Ch x y z =

H32.logxor (H32.logand x y)
(H32.logand (H32.lognot x) z)

…
let shuffle_core hash block ws k t =

…
let e = hash.(4ul) in
let f = hash.(5ul) in
let g = hash.(6ul) in
…
let t1 = …(_Ch e f g)… in
let t2 = … in

// C code
…
uint32_t e = hash_0[4];
uint32_t f1 = hash_0[5];
uint32_t g = hash_0[6];
…
uint32_t t1 =  …(e & f1 ^ ~e & g)…;
uint32_t t2 = …;



Verified Interoperation
Between C and Assembly

• Low* can be extracted to C

• Vale verifies assembly code

• We verifiably interoperate between C and assembly

• Challenges:
─ Different memory models

─ Calling conventions vary based on hardware, OS, compiler

─ Different security mechanisms for preventing side channels



Verified Interoperation
Between C and Assembly
• Reconciling Memory

─ A map from the Low* memory model to Vale’s
─ A library of views that capture the layout of arrays

• Calling Conventions
─ A generic trusted wrapper sets up the initial register state
─ A combinator captures that a Vale procedure (mem -> mem) can 

“morally” be executed with a suitable effect when in Low*

• Security
─ (Paper) proof unifying sequences of Low* and Vale observations 
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1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications



Illustrate crypto 
construction verification 
on TLS 1.3 record layer

AEAD

Stream 

Encryption

TLS record 

protection

AES128

AES256

Poly1305

Cipher

IND-

PRF

Chacha2

0

GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Record Layer

Protection

Symmetric Cryptography

• Security definition

• New constructions

• Concrete security bounds

• Verification

Crypto assumption

Verified by typing

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
RSA.html
PRF.html


Client Server

decrypt
encrypt TLS record layer



random

sampling

Client Server

decrypt

ideal encryption log

#1

encrypt

the adversary can distinguish 
between real and ideal
only with a small probability 

table 

lookup



T

a

g

PRFAEAD Key

IV || 0

One-time MAC key

PRF

IV || 1

PRF

IV || n

…

……
lengths of 

plaintext and 

additional data

Cipher

tag

……

One-time MAC pad

…



Given

• a block cipher, modelled as
a pseudo-random function

• a field for computing one-time MACs

• injective message encodings

We program and verify a generic
authenticated stream encryption 
with associated data.

We show

• functional correctness

• security (reduction to PRF assumption)

• concrete security bounds for the 
3 main record ciphersuites of TLS

AEAD

Stream 

Encryption

TLS record 

protection

TLS API

LHA

E

AES128

AES256

Poly1305

Cipher

IND-

PRF

AES 

CBC

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

arithmetic correctness

(field computations) 

functional correctness

(low-level assembly)

abstraction 

& agility

security

idealization

injectivity

loops & stateful invariants

(reasoning on ideal logs)

TLS-specific mechanisms

• fragmentation

• content multiplexing

• length-hiding, padding

• re-keying

• 0-RTT, 0.5-RTT

many kinds of proofs

not just code safety!

TLS FFI

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html


AEAD

Stream 

Encryption

IND-

PRF

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Probabilistic proof 

(on paper) in abstract

field + F* verification
Standard

crypto 

assumption

F* type-based verification on code

formalizing game-based reduction

Theorem: the 3 main AEAD ciphersuites are 
secure for TLS 1.2 and 1.3 except with 
probabilities 

𝑞𝑒 is the number of encrypted records; 

𝑞𝑑 is the number of chosen-ciphertext decryptions; 

𝑞𝑏 is the total number of blocks for the PRF 

StatefulLHAE.html
StatefulPlain.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
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Spec.SHA2.fst

Spec.SHA2.fsti

implements

val compress:
a:sha_alg -> state a -> bytes -> state a

• Agile specifications limit code duplication!

• Abstract specifications tame context proliferation

This maximizes spec compactness



val compress:
a:sha_alg → state a → array u8 → Stack unit

let state a = function
| SHA2_224 | SHA2_256 -> array u32
| SHA2_384 | SHA2_512 -> array u64

This could be compiled as a union. 

However, this is not idiomatic or 

efficient.

let compress_224 = compress SHA2_224
let compress_256 = compress SHA2_256
let compress_384 = compress SHA2_384
let compress_512 = compress SHA2_512

Instead, we rely on partial evaluation:
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EverCrypt: Performance

***

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1



matches or exceeds 

or unverified



Average 

cycles/byte
EverCrypt (portable)

OpenSSL   (portable)

EverCrypt (targeted)

OpenSSL   (targeted)



Average 

cycles/byte
EverCrypt
(targeted)

OpenSSL   
(targeted)



Implementation Radix Language CPU cycles

donna64 51 C 159634

fiat-crypto 51 C 145248

amd64-64 51 Assembly 143302

sandy2x 25.5 Assembly + AVX 135660

EverCrypt (portable) 51 C 135636

OpenSSL 64 Assembly + ADX 118604

Oliveira et al. 64 Assembly + ADX 115122

EverCrypt (targeted) 64
C + Assembly + 

ADX
113614 

Unverified

Verified



Performance: Merkle tree
Average 

insertions/sec

Bitcoin’s implementation: 950K ins/sec

EverCrypt is 2.8x faster!



Summary
• Crypto software must be fast and secure

• New verification tools & techniques make this possible
─ EverCrypt provides verified secure, agile, high-perf crypto

• Everest will showcase the power of verification and its 
applicability to real-world security problems

82

https://project-everest.github.io/

Thank you!
parno@cmu.edu


