Developing Fast, Mechanically-Verified
Cryptographic Code

Bryan Parno

Carnegie Mellon University

The HTTPS Ecosystem is critical

Services & Applications

Edge " cURL

WebKit

Skype

1N

Apache

Nginx

Clients

Servers

HTTPS Ecosystem

 Most widely deployed security protocol?
— 40% all Internet traffic (+40%/year)

 Web, cloud, email, VoIP, 802.1x, VPNs, ...

The HTTPS Ecosystem is complex

OpenSSL

/TLS Protocol\

40K SLOC

Crypto

C Asm
160K 150K

K SLOC SLOC /

BoringSSL

\Services & Applications

/TLS Protocol
30K SLOC

‘ebKit 1N

Skype Apache

Nginx

Servers

D

Crypto

C Asm
100K 60K

HTTPS

y

D9 ASN.1

TLS

\SLOC SLOC

%k % %

RSA [| SHA

'

ECDH

4Q

Metwork Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 3268, i:ig, 4366, 5246, 5877 July @8, 2815
(if approved)
Updates: 4492 (if a pp ved)
Intended status: Standa d Track
Expires: January 9, 2016
The Transport Layer Security (TLS) Protocel Version 1.3
draft-ietf-tls-tls13-@7
Abstract
This do nt specifies Version 1.3 of the Transport Layer Security
{TLSj pro t cl. The TLS protocol provides communicaticns ty
over the In t et. The proto l 11 client/ ver ppl t to
nicate in a way that is d signed t pre sdropping, LJ
tampering, or message forgery.

Crypto Algorithms

\ Stdlib (e.g., buffers, bytes)/

\ 4

A 4

ntrusted network (TCP, UDP, ...)

3

The HTTPS Ecosystem is buggy

» 20 years of attacks & fixes

Services & Applications
Buffer overflows

Memory management Edge || cURL | webkit || skype |[11s]| Apache || Nginx
Incorrect state maChlnes -
Lax certificate parsing Clients Servers

Weakly or badly implemented crypto
Side channels
Error-inducing APIs

Flawed standards Certification | | -
Authority

Many implementations R
OpenSSL, Schannel, NSS, ... E] 1/
, RSA | SHA le—
Still patched every month!)
@he twashington Post

‘FREAK’ flaw undermines security for Apple
and Google users, researchers discover

A 4

Untrusted network (TCP, UDP, ...) 4

Everest:

Deploying Verified-Secure Implementations
in the HTTPS Ecosystem "~

=

e
’z/

Everest Goals

* Fully verified replacement

Services & Applications

* Widespread deployment EdgeJLCURL

Clients

* Trustworthy, usable tools

$ apt-get install verified https
$ /etc/init.d/apache2 restart

Webg LSkyperI L IS Jupache

<
TTPS

\ 7
ASN. %

y

%k %k %k

—

i 4/
RSA SHA =

VI

—— ECD 4Q
ZB Crypto ithms
\ Stdlil:\J (e?g., buffers, b

\ /4
TLSﬁ
Y

Servers

N/

A 4

TFECOREM PROVER Untrusted network (TCP, UDP,

..) 6

Research Questions

* How do we decide whether new protocols are secure?
— Especially when interoperating with insecure protocols

 Can we make verified systems as fast as unverified?

e How do we handle advanced threats?
— Ex: Side channels

 Why should we trust automated verification tools?

e How can verification be more accessible?
— Especially to non-experts in verification

S

€c rity

Patrice

Antoine
Godefroid g

Delignat-Lavaud

Catalin Hritcu

Tahina
} Ramanandro
Jonathan

Santiago Protzenko
Zanella-Beguelin

Christoph

o Wintersteigere €% | “
o D\ /\,er\ﬁ\ca’t\o
Beurdouche

Karthik

i
Y
g;f N
A
1

Markulf

ohlweiss
0/,

Bhargavan Cédric
& Fournet

Jean Karim
Zinzindohoue

Everest Team
Members

[MSR-Cambridge]

[MSR-Bangalore |

| MSR-Redmond |
| INRIA |

| owu |

+ interns and many
other collaborators...

Current Status

Everest: Towards a Verified, Drop-in Replacement

of HTTPS

Karthikeyan Bhargavan®, Barry Bon|
Cédric Fournet?, Chris Hawblitzel?,

htiaq?, Markulf Kohlweiss?,
Kenji Maillard’, Jianyang Pang', Br
Jonathan Protzenko?, Tahina Ramarf
Aseem Rastogi?, Nikhil Swamy?, La
Santiago Zanella-Béguelin?, and Jeay

Sami

Karthikeyan Bhargavan?

Antoine Delignat-Lavaud?

Verified Low-Level Programming Embedded in F*

Cédric Fournet® Citilin Hricu?

Tahina R
Santiago Z:

P

Aseem Rastogi®

Nikhil Swamy® Peng Wang!
Jean-Karim Zin: é2

1in3 : doh,

£

(Partial) Deployments
Microsoft

HACL®

Tezos blockchain
WireGuard VPN
Mozilla Firefox

Crypto Algorithms

HACL": A Verified Modern Cryptographic Library

Jean Karim Zinzindohoué

Karthikeyan Bhargavan
INRIA

SMicrosoft Rescarch

mory safety is impervious to attacks like Heartbleed [2]

Jonathan Protz
Microsoft Resecar

ABSTRACT

is a verified portable C eryptograpl

‘ments modern cryptographic primitives sucl

Vale: Verifying High-Performance

Cryptographic Assembly Code

Barry Bond*, Chris Hawblitzel*, Manos Kapritsos!, K. Rustan M. Leino*, Jacob R. Lorch*,

Implementing and Proving the TLS 1.3 Record Layer

Karthikeyan Bhargavan*

Markulf Kohlweiss'
Nikhil Swamy'

Antoine Delignat-Lavaud?

Tsity

Cédric Fournet!

Jian;

Santi

A Verified, Efficient Embedding of a Verifiable Assembly

Language

protzémic

RSA

Spinoffs
QUIC prototypes

Formally Verified Cryptographic Web Applications
in WebAssembly

EverParse: Verified Secure Zero-Copy Parsers
for Authenticated Message Formats

Tahina Ramananandro*

"

Antoine Delignat-Lavaud* Cédric Fournet

i Mellon University, USA
University, USA

ft Research, USA

In University, USA

kearch, India

el language with code written
h hybrid programs, this paper
s efficient verification of both
ea is to use the computational
on-condition generator during
ition sent by the type checker
ing, we demonstrate improved
bach has allowed us to complete
, a cryptographic routine used

Nikhil Swamy*

Tej Cha;

Research]

Verified TLS models and reference implementations

TLS 1.3 RFC fixes and improvements
Komodo: Verified SGX-like enclaves on ARM

EverCrypt: A Fast, Verified,
Cross-Platform Cryptographic Provider

Jonathan Protzenko*, Bryan Parnof, Aymeric Fromherz?, Chris Hawblitzel*, Marina P

Polubel Bh

t, Karthik B

Benjamin Beurdouche', Joonwon Choi"$, Antoine Delignat-Lavaud®, Cédric Fournet®, Tahina Ramananandro®,

Aseem Rastogi®, Nikhil Swamy~, Christoph W

iCarnegie Mellon University

*“Microsoft Research

Abstract—We present EverCrypt: a comprehensive collection
of verified, high-

*, Santiago Z:

Maria SMIT

prone (due in part to Intel and AMD reporting CPU features

er n
able via a carefully designed APL The API provably supports
agility (choosing between multiple algorithms for the same
functionality) and multiplexing (choosing between multiple im-
the same Through a
of ahstraction and zero-cost generic programming, we show how
agility can simplify verification without sacrificing performance,
and we demonstrate how C and assembly can be composed and
verified against shared specifications. We substantiate the effec-
tiveness of these techniques with new verified implementations (in-
cluding hashes, Curve25519, and AES-GCM) whose performance
matches or exceeds the hest unverified implementations. We
validate the API design with two high-performance verified case
studies built atop EverCrypt, resulting in line-rate performance
for & secure network protocol and a Merkle tree library, used in
a production blockchain, that supports 2.5+ million insertions/sec.
Altogether, EverCrypt consists of over 100K verified lines of
specs, code, and proofs, and it produces over 45K lines of C

istently [67]), with various cryptographic providers
invoking illegal instructions on specific platforms [63], leading
to killed processes and even crashing kemels.

Since a cryplographic provider is the linchpin of most
security-sensitive applications, its correctness and security
are crucial. However, for most applications (e.g., TLS, cryp-
tocurrencies, or disk encryption), the provider is also on the
critical path of the application’s performance. Historically, it
has been notoriously difficult to produce cryptographic code
that is fast, correct, and secure (e.g., free of leaks via side
channels). For instance, OpenSSLs 1iberypto has reported
25 vulnerabilities between May 1, 2016 and May 1, 2019,

Such critical, complex code is a natural candidate for formal

ifi which can mat i guarantee
and security even for complex low-level implementations.

EverCrypt: A Verified
Crypto Provider

Why Verity Crypto?

* Bugs are real, and potentially devastating!
e 24 vulnerabilities in OpenSSL's 1ibcrypto in ~3 years!

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress

all your other poly1305 code paths against a reference implementation.”

These produce wrong results. The first example dffYou know the drill. See the attached poly13@5_test2.c.

the other three also on &4 bit. $ OPENSSL_ia32cap=@ ./polyl1305_test2

PASS
$./poly13@5_test2
Poly1385 test failed.

got: 26374081203086ea73f071e342522820
expected: 2637408fel3086ea73f9712342522820

I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.

This was found because a run of our SSL tests happened to find a
B problematic input. I've trimmed it down to the first block where they

Side Channel Challenge (Attacks)

Protocol-level Traffic analysis Timing attacks against Memory & Cache

side channels cryptographic primitives

TLS messages may reveal information Combined analysis of the time and A remote attacker may learn Memory access patterns may expose

about the internal protocol state or the length distributions of packets leaks information about crypto secrets by secrets, in particular because caching

application data information about the application timing execution time for variousinputs may expose sensitive data (e.g. by

timing)

. Hello message contents (e.g. time ¢ CRIME/BREACH (adaptive chosen ¢ Bleichenbacher attacks against . OpenSSL key recovery in virtual
in nonces, SNI) plaintext attack) PKCS#1 decryption and signatures machines

. Alerts (e.g. decryptionvs. padding ¢ User tracking . Timing attacks against RC4 (Lucky ¢ Cache timing attacks against AES
alerts) . Auto-complete input theft 13)

. Record headers

‘ Bleichenbacher ’ ‘ E_CD_SA ’ BREACH
| Side-channel tllmmg
‘ Vaudenay ’ ‘ AES cache timing leaks in Web

i Tagsize CRIME Luckyld DROWN]
Remote timing applications

attacks are practical 1 \

2R 2

2000 .. 2006 2007 2008 2009 2010 2011 2012 2013 2014

Current State of the Art: OpenSSL

* Hand-written mix of Perl and assembly
e Customized for 50+ hardware platforms
 Why?

* Performance!

sub BODY_00_15 {
my ($i,%a,$b,%c,$d,$e,$f,8g,%h) = @_;
$code.=<<___ if ($i<16);
#if ARM_ARCH__>=7
@ ldr $t1, [$inpl,#4 @ &4
1if $i==15
str $inp, [sp,#17+#/] @ make room for $t4
endrf
eor $t0,%e,$e,ror# $Sigmal[1]-$Sigmal[0]"
add $a,%$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,%e,ror# $Sigmal[2]-$Sigmal[0] @ Sigmal(e
ifndef __ARMEB__
rev $t1.$t1

C mmm

ASM without AES-NI
ASM with AES NI - -

200
lIIIII

~ 1000 [
~—
‘323 800 |
S
- 600
2.

~ 60 = 400 F

éso- %D

2 st o

5 =

g 30 ==

-3 -

=

g

an

1024 8192 16384

+ 1R °
10 f
0 Number of 1nput bytes per AES-128 encryption

: D %
o8 Q)O(‘ C}'I\ N .@\0@

Features of an Ideal Library (programmer)

e Usable

 preferably in C or ASM, not “exotic” languages

 Comprehensive
* one algorithm per processor generation / bitsize

* Auto-configurable multiplexing
* best algorithm picked automatically
 Agility

* clients deal with a unified API for each family

Features of an Ideal Library (researcher)

* Verifiable
e written in a language amenable to verification

* Programmer productivity
* share as much code as possible / agile

* Auto-configurable
* doesn’t blue-screen with “missing instruction”

* Deep integration
* each implementation verifies against the same spec

* Abstraction
* clients need not know any implementation details

EverCrypt provides a comprehensive verification result
without compromising performance

EverCrypt Internals

EverCrypt mediates between (possibly verified) clients and different implementations
A .
2 P

C client miTLS Merkle trees clients

A
=1

EverCrypt (C) agile, multiplexing library

Vale (ASM) cryptographic providers

EverCrypt Features

- Agility

- same functionality (e.g., hash), multiple algorithms
- Multiplexing

- same algorithm (e.g., SHA2_256), multiple implementations
- Abstraction

- clients verify against a single spec and an abstract footprint

EverCrypt is Comprehensive

Algorithm | C version Targeted ASM version
AEAD
AES-GCM AES-NI + PCLMULQDQ + AVX
Chacha-Poly | yes
High-level APIs
Box yes
SecretBox yes
Hashes
MD5 yes
SHAI yes
SHA2 yes SHA-EXT (for SHA2-224+SHA2-256)
MACS
HMAC yes agile over hash
Poly1305 yes X64
Key Derivation
HKDF yes agile over hash
ECC
Curve25519 | yes BMI2 + ADX
Ed25519 yes
Ciphers
ChaCha20 yes
AES128, 256 AES NI + AVX
AES-CTR AES NI + AVX

Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

A

Verified Applications

18

Cryptographic Implementation Reguirements

Difficult to meet all three goals.

Correct Secure Fast
Formally prove that Correct control flow Platform-agnostic
Implementation and free from leakage & platform-specific
matches specification and side channels optimizations

DaFnqu WC‘L)Z

19

Result: Crypto implementations usually fall into one of two camps.

Fast but non-verified Verified but slow
crypto implementations crypto implementations

20

Perf gap

80

Implementation

SHA 256 Latency [100 KB data]

Unverified

OpenSSL

Verified - <,
implementations
/

Zinzindohoue
et al.
[ePrint “15]

Appel et al.
[ACM TOPLAS ‘15]

OpenSSL Performance Tricks

Mix of ASM +
Perl A bl g
______ ssembly code
S;b %ODY_O(I)ET\I]S {(_--" is a Perl string
code .= <<
#if ARM _ARCH_ >=7 « o _
@ Idr $t1,[$inp],#4 ~ o
H#if Si==15 C macros for target
\ Instruction
o selection
#endif’
END \
) o
T C macros for

" -
—_—
_— e e -

code specialization

OpenSSL Performance Tricks

Perl variables for
register names

@V = (4", "15, ‘16", 17", 18", 19", “r10”, “r11”);

for ($i=0; $i<16; $i++) { - e e e Code Iexpansion
&BODY_00_15(%i, @V); using loops
unshift(@V, pop(@V));

} A

\ -
S S Register

-~

= = - selection using
Perl arrays

23

sub BODY_00_15 {

my ($i,$a,$b,$c,$d,$e,$f,$9,5h) = @_;
$code.=<<END if ($i<16);
#if _ ARM_ARCH__ >=7

$t1,[$inp],#4

$inp,[sp,#17*4]

$t0,$e,$e,ror# $Sigmal[1]-$Sigmal[0]’

$a,$a,$t2

$t0,$t0,$e,ror# $Sigmal[2]-$Sigmal[0]’

$t1,$t1

$t1,[$inp,#3]
$a,$a,$t2
$t2,[$inp,#2]
$t0,[$inp,#1]
$t1,$t1,$t2,IsI#8
$t2,[$inp],#4
$t1,$t1,$t0,Isl#16

$inp,[sp,#17*4]

$t0,$e,$e,ror# $Sigmal[1]-$Sigmal[0]

$t1,$t1,$t2,Isl#24

$t0,$t0,$e,ror# $Sigmal[2]-$Sigmal[0] @

@ Idr
#if $i==15
str
endif
eor
add
eor
#ifndef _ ARMEB___
rev
endif
#else
@ Idrb
add
Idrb
Idrb
orr
Idrb
orr
#if $i==15
str
endif
eor
orr
eor
Sigmal(e)
#endif

END

Result: Code becomes difficult to
understand, debug, and formally
verify for correctness and security.

24

Vale: A Firmer Foundation

Flexible framework for writing high-performance,
proven correct and secure assembly code.

o o

Correct Secure Fast

o

25

Vale: A Firmer Foundation

Flexible framework for writing high-performance,
proven correct and secure assembly code.

Flexible Syntax High Performance High Assurance
Vale supports constructs Code generated by Vale Vale can be used to prove
for expressing functionality matches or exceeds functional correctness and

as well as optimizations. OpenSSL’s performance. correct information flow.

26

Key Language Constructs in Vale

Assembly
Instructions

e.g. Mov, Rev, and
AesKeygenAssist

Vary according to
the target platform

Structured
Control Flow

e.g. if, while,
and procedure

Enable proof
composition

Optimization
Constructs

Customize code
generation

27

Optimization Using inline If Statements

Vale supports inline if statements, which are evaluated
during code generation, not during code execution.

Useful for selecting instructions and for unrolling loops.

Target Instruction Selection Loop Unrolling
(Platform-dependent optimization) (Platform-independent optimization)
inline if(platform == x86_AESNI) { inline if (n > 0) {

} recurse(n - 1);

}

28

Example Vale Code

Example
Vale Code

procedure Incr_By N(inline n:nat) {
inline if (n > 0) {
ADD(r5, r5, 1);
Incr_By N(n - 1);
}
}

Incr_By N(100);

29

Example Vale Code

procedure Incr_By N(inline n:nat) {
inline if (n>0) {
ADD(r5, r5, 1);
Incr_By N(n - 1);

}
}

Incr_By N(100);

—)

ADD(r5, 15, 1)
ADD(r5, 15, 1)
ADD(r5, 15, 1)
ADD(r5, 15, 1)

Total 100 ADD
instructions

30

Example Vale Code

Example Generated

Vale Code Assembly Code
procedure Incr_By N(inline n:nat) { add r5,r5, 1
inline if (n > 0) { add r5, 15, 1
ADD(r5, r5, 1); add r5,r5, 1
Incr By N(n - 1):) add r5, 15, 1

}

}
Total 100 ADD

Incr_By N(100); instructions

31

Cryptographic Implementation Reguirements

Fast

Code generated by
Vale matches or
exceeds OpenSSL’s
performance.

32

Cryptographic Implementation Reguirements

Correct

Crypto code in
Vale language

Lemmas

Crypto
Specification

\ 4

! Machine
Semantics
(x86, x64, ARMvV7)

Vale Architecture

Vale Tool

AST +
Proofs

Proof Assistant

l

Verified?
(Yes / No)

34

Vale Architecture

Crypto code in

Vale language Vale Tool
Lemmas AST +
Proofs
Crypto -
Specification F* Verifier
|) > (based on Z3
Machl_ne solver)
Semantics
(x86, x64, ARMV7) l
Verified?

(Yes / No)

Or any other proof assistant
e.g. Coqg, ACL2, Lean,
Dafny

35

Vale Architecture

Crypto code in

Vale Tool
Vale language
Lemmas AST +
Proofs
Crypto S - AST
Specification \ (bz*s\ésfg:]eé?) — Assembly Printer
I - -
Machine solver)
Semantics l észembly
(x86, x64, ARMV7) l oee
N Assembler
Verified? (e.g. GAS / MASM)

(Yes / No)

36

Untrusted

Crypto code in

Component Vale Tool D E—
~ Vale language
Lemmas —
CO"r‘: ”O":]:m AST + Handwritten
E Proofs ‘ Libraries
Crypto - Y » ¥
Specification F* Verifier — Assembly Printer
I : > (based on Z3
Machl_ne solver)
Semantics l
(x86, X64, ARMV7) l
o Assembler
Component Verified? (e.g. GAS / MASM)
S (Yes / No) 37

J

What is it like to verify software?

Demo!

Cryptographic Implementation Reguirements

Correct

Vale supports
assertions that are
checked by F*

39

Cryptographic Implementation Reguirements

Secure
(Leakage Free)

40

Secret Information Leakage

Secrets should not leak through:

- Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

=> Residual Program State: Secrets left in registers or memory after
termination of program

41

Secret Information Leakage

Secrets should not leak through:

- Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

Secret Public
v Input Input
Should)7
NOT be ,/
correlatedll Crypto Program
/ ‘

Side Channel l
e Observations Output

42

Information Leakage Specification

Secret #1

Public Inputs

Based on Non-
Interference

Secret #2

1

Crypto Program

Digital Side
Channel
Observations #1

1

Crypto Program

Digital Side
Channel
Observations #2

43

Information Leakage Specification

Based on Non-
Interference

Formally, for a crypto program C,

V pairs of secrets s, and s,
V public values p,
obs(C, p, s1) = obs(C, p, s2)

Solution: Verified Analysis

AST

| ,
v

AST
Analyzer

(in F*)

Proof
Trustworthy Output
(because of proof) \ |

N Specification
S Output A

-
-~

7’

~ ~-71Yes / No) A

~

—

_ One-Time
Verification

_ Trusted but
succinct

45

Verified Leakage Analysis

AES AST / Poly-1305 AST / SHA-256 AST / ...

l

Verified
Leakage
Analyzer

|

Leakage
Free?
(Yes / No)

46

Problems Caused by Aliasing

store [rbx] < O
store [rax] <— 10
load rcx < [rbx]

Does rcx contain O or 107?

Difficult to answer without knowing whether rax = rbx.

47

Alias Analysis Is a Difficult Problem

Existing alternatives:

1. Analyze source code in a high level language
But compiler may introduce new side channels

2. Implement pointer analysis for assembly code
But analysis will be imprecise

3. Assume no aliases
But this is an unsafe assumption.

Vale is uniquely suited to use a different approach:

Reuse developer’s effort from proof of correctness.

48

Reusing Effort from Proof of Correctness

Functional verification requires precisely identifying information flow.

Specification Implementation

store [rbx] <— O
‘output’ should

be equal to 0 store [rax] <— 10

load output < [rbx]

To prove that output = 0 and not 10, developer should prove that rax # rbx.

49

Lightweight Annotations for Memory Taint

Vale requires the developer to mark memory operands that contain secrets:

load rax < [rdX] @secret

Easy for developer since proving correctness requires identifying all information
flows.

Since these annotations are checked by the verifier, they are untrusted.

50

Cryptographic Implementation Reguirements

Secure

Vale checks for
leakage via state and
digital side channels.

Examples of Using Vale

A few examples of the many cryptographic programs verified in Vale:

1. SHA-256 on ARMv7 (ported from OpenSSL) Discovered leakage on stack.

2. Poly1305 on x64 (ported from OpenSSL) Confirmed a previously known bug.

3. SHA-256 on x86

4. AES-CBC and AES-GCM (with AESNI) on x64

After fixing the issues, all programs were proved correct and secure using Vale.

52

Key Lessons

1. Vale’s specifications + lemmas were reusable across
platforms (x86, x64, ARM).

2. Porting OpenSSL’s Perl tricks required understanding and
proving invariants.

Some of OpenSSL’s optimizations were automatically
proved by the verifer.

Verification Effort

In person-months

Tool Development

——

Vale Leakage Analysis AES CBC | Polyl1305 | 1st SHA | SHA Port

12 6 5 0.5 6 0.75

N ——— —

Crypto Implementations

Vale Summary

e Vale is a framework for generating and verifying crypto implementation that
IS correct, secure, and fast for arbitrary architectures.

e Vale's flexible syntax allows writing assembly code that OpenSSL

expresses using ad-hoc Perl scripts, C preprocessor macros, and custom
interpreters.

e Vale supports verified analysis of code, e.g., information leakage analysis.

55

Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

o ok~ W Mo

Verified Applications

56

Verified C With the HACL* Architecture

HACL*

E* High-level ~ Optimized stateful Low*

specifications ~w code (subset of F*)

Functionally
— equivalent —
F* compiler u u KreMLin
OCam| C library
executable

@ GCC, CompCert, Clang

Assembly
code

57

HACL* SHA example

// F* code
let Chxyz=
H32.logxor (H32.logand x y)
(H32.logand (H32.lognot x) z)

let shuffle_core hash block ws k t = // C code
let e = hash.(4ul) in
let f = hash.(5ul) in
let g = hash.(6ul) in

uint32_t e = hash_0[4];
uint32_t f1 = hash_0[5];
uint32_t g = hash_0[6];

lettl=..(Chefg)..in

. uint32 ttl= ..(e &fl*~e & g)..;
lett2 =...in

uint32 tt2=..;

Verified Interoperation
Between C and Assembly

* Low* can be extracted to C
* \ale verifies assembly code
* We verifiably interoperate between C and assembly

* Challenges:
— Different memory models
— Calling conventions vary based on hardware, OS, compiler
— Different security mechanisms for preventing side channels

Verified Interoperation
Between C and Assembly

e Reconciling Memory
— A map from the Low™ memory model to Vale’s
— Alibrary of views that capture the layout of arrays

e Calling Conventions

— A generic trusted wrapper sets up the initial register state

— A combinator captures that a Vale procedure (mem -> mem) can
“morally” be executed with a suitable effect when in Low*

* Security
— (Paper) proof unifying sequences of Low* and Vale observations

Talk Overview

Introduction to Everest and EverCrypt
Verifying Assembly

Verifying C + interop

Verifying Cryptographic Constructions
Achieving Agility and No-Cost Abstraction

o kA Wb E

Verified Applications

llustrate crypto
construction verification
on TLS 1.3 record layer

» Security definition

New constructions
 Concrete security bounds
« Verification

Symmetric Cryptography

AES128

Chacha2

GHASH

Poly1305

Cipher

IND-
PRF

AEAD

Encryption

TLS record
protection

Legend:

Verified by typing

Crypto assumption

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

/ Record Layer

Protection

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
RSA.html
PRF.html

Stream Encryption: Security Definition

SEIMIONENNA ttack at dawn! . . Attack at [
message established connection (keys) -
Clent «=-=-=-=-=-=-=-="-=-=--=-—-—-—-—-—-==-~- ¥ Server
fragments
(padded)
TLS record layer
< —>
Il 3 ef87abce4363 untrusted network

fragments RETRTFyENETT

Stream Encryption: Security Definition

SEIIOUNA tt5ck at dawn!
message

established connection (keys)
Client & = = = = = = = = = = e e e e = = = = = = = +» Server

_________ 1
random] d

fragments sampling

(padded)

plaintext Attack at [

=="43ef87abced260

the adversary can distinguish
between real and ideal
only with a small probability

Il 3 ef87abce4363 untrusted network

fragments IeyRETyINETTS

Encrypting a fragment QSR BENRCS
with ChaCha20 Poly1305 block 1 block n

64 bytes < 64 bytes

V|| 0 v || 1 V|| n
6 bytes 6 bytes

Gty PRF

32 bytes

Data Data
block 1 block m

lengths of

plaintext and
additional data

16 bytes l516 bytessm ~ [4x16bytes lﬁ 4x16 bytes l 16 bytes
X .- > — ces > » X
_»16 bytes f f T T T

One-time MAC key

16 bytes , One-time MAC pad

Stream Encryption: Construction

Given
« a block cipher, modelled as
a pseudo-random function

- a field for computing one-time MACs
« injective message encodings

We program and verify a generic
authenticated stream encryption
with associated data.

We show
- functional correctness
« security (reduction to PRF assumption)

-« concrete security bounds for the
3 main record ciphersuites of TLS

functional correctness
(low-level assembly)

many kinds of proofs
not just code safety!

arithmetic correctness
(field computations)

AES128 Chacha20

GHASH Poly1305

CBC

AES256
AES

Cipher

IND-
PRF

AEAD

abstraction
1-Time MAC & aglllty

INDACMA | security
idealization

AEAD.Encoding oo ..
tnjectivity

AEAD.Invariant

A

Stream
Encryption

loops & stateful invariants
(reasoning on ideal logs)

v
LHA/
I\/

TLS record
protection

v

TLS API

v

TLS FFI

TLS-specific mechanisms

fragmentation

content multiplexing
length-hiding, padding
re-keying

O-RTT, 0.5-RTT

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html

Stream Encryption: Concrete Bounds

Theorem: the 3 main AEAD ciphersuites are

secure for TLS 1.2 and 1.3 except with
probabilities

Ciphersuite €Lhse (A[qe, qa]) <

General bound

eprf(Blge(1 + [(2° + 1)/6]) + qa + Jo))
+ (':MMacl(C[21 + 1+ 461 qd, qe + qd])

Chcnad | ae(ela (1457) 4o + 30
oly
2

AES128-GCM | eprp(Blqv)) + 5155 + 5345
AES256-GCM

where gy = ge(1 + [(2" + 1)/16]) + ga + 1
AES128-GCM | 455 (eprp(B[2°%°]) + 550 + 355)
AES128-GCM

with re-keying every 22%°

records (counting

qp for all streams, and g < 260 per stream)

q. s the number of encrypted records;
qa [s the number of chosen-ciphertext decryptions;
qp s the total number of blocks for the PRF

Probabilistic proof

Standard (on paper) in abstract
crypto field + F* verification
assumption
% EMMacl — d.T.qy
EPrf | R|
IND-1CMA
IND-
PRF
AEAD.Encoding
AEAD AEAD.Invariant
Stream
Encryption
€Lhse (A[Qe ; Qd])
— C€Prf €MMacl

F* type-based verification on code
formalizing game-based reduction

StatefulLHAE.html
StatefulPlain.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html

Talk Overview

Introduction to Everest and EverCrypt
. Verifying Assembly
. Verifying C + interop

1.

2

3

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction
6

. Verified Applications

68

Abstract, Agile Specifications

« One key challenge in SMT-backed software
verification: the context

» Introducing abstractions is essential, even at
the level of the specs

val compress:
a:sha_alg -> state a -> bytes -> state a

Spec.SHAZ2 fsti

Implements

Spec.SHA2 fst * Agile specifications limit code duplication!
« Abstract specifications tame context prolifera

This maximizes spec compactness

Generic Programming + Partial

Fvaluation
This is not Low™:

val compress:
a:sha alg » state a » array u8 » Stack unit

Reason- let state a = function
’ | SHA2 224 | SHA2 256 -> array u32
| SHA2 384 | SHA2 512 -> array u64

This could be compiled as a union.
However, this is not idiomatic or
efficient.

Instead, we rely on partial evaluation: let compress_224 = compress SHA2_224
let compress 256 compress SHA2 256

let compress 384 compress SHA2 384
let compress 512 = compress SHA2 512

Connecting Vale and HACL* for
Implementation Multiplexing

let multiplexed compress blocks sha2 256
(s: state SHA2 256)
(blocks: array u8)

(n: u32)

if StaticConfig.has vale && AutoConfig.has shaext then
Vale.Interop.SHA2.compress 256 s blocks n

else
Hacl.SHA2.compress 256 s blocks n

This uses static and dynamic configuration
* On the Low* side:

extern void Vale Interop SHA2 compress256(uint32 *s, uint8 *blocks, uint32 n)

 On the Vale side:

.text
.global Vale Interop SHA2 compress256

Vale_Interop_SHA2 compress256:

Unified Specifications

« From the client’s perspective, the algorithmic
specification remains the same

* [t is now agile between all algorithms from a
given family

- The specification abstraction ensures no
context pollution occurs

» The library can serve as a foundation for
higher-level constructions

Talk Overview

Introduction to Everest and EverCrypt
. Verifying Assembly
. Verifying C + interop

1.

2

3

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction
6

. Verified Applications

/3

Veritied Applications

Using EverCrypt as a foundation, we built
advanced functionalities, such as:

- HMAC

- HKDF

- Merkle trees

- QUIC packet encryption

Fach functionality offers a new layer of
abstraction to further shield its clients from large
contexts.

Relying on EverCrypt, each is naturally agile and
multiplexing.

Example: Merkle trees

« Incremental tree construction

 Each insert requires 1 hash, on average

 Proven:

« Functionally correct
 Cryptographically secure Merkle root (r)

New Merkle root (r')

*e hn

AR -

EverCrypt: Performance

High-Level Summary:

FverCrypt matches or exceeds the
performance of state-of-the art
(verified or unverified)
implementations!

Performance: SHA-256

Ave rage 0 I I I I E\I/erCrypt (|50rtabI_I
cycles/byte OpenSSL (portab| ey
5T EverCrypt (targetedymmmm |
OpenSSL (targetedy™ &
20 -]
15

10

1024 2048 4096 8192 16384 32768 65536

Message size [bytes]

Performance: AEAD

Average 3 | | | | | | | | |
| I:? EverCrypt]
cycles/ y;:% (targeted) —
' OpenSSL
(targeted)
2 L
L5
1 .
il “_“ “_“
0
AES128 AES256 Chacha20 AES128 AES256 Chacha20 AES128 AES256 Chacha20
GCM GCM Poly1305 GCM GCM Poly1305 GCM GCM Poly1305
1kB 8kB 64kB

Message size [bytes]

Performance: Curve25519

donna64
flat-crypto
amd64-64

sandy2x

EverCrypt (portable)
OpenSSL

Oliveira et al.

EverCrypt (targeted)

Assembly
Assembly + AVX
C
Assembly + ADX

Assembly + ADX

C + Assembly +
ADX

Unverified
Verified

159634
145248
143302
135660
135636
118604
115122

113614

Performance: Merkle tree

Average 3 106
insertions/sec

2.5x10°

2x10°

Bitcoin’s implementation: 950K ins/sec

EverCrypt is 2.8x faster!

Ik 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k

Tree size [# nodes]

summary

* Crypto software must be fast and secure

* New verification tools & techniques make this possible
— EverCrypt provides verified secure, agile, high-perf crypto

* Everest will showcase the power of verification and its
applicability to real-world security problems

https://project-everest.github.io/

Thank you!

parno@cmu.edu

82

