
Developing Fast, Mechanically-Verified
Cryptographic Code

Bryan Parno

1

Carnegie Mellon University

2

The HTTPS Ecosystem is critical

• Most widely deployed security protocol?

– 40% all Internet traffic (+40%/year)

• Web, cloud, email, VoIP, 802.1x, VPNs, …

Services & Applications

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

HTTPS Ecosystem

3

The HTTPS Ecosystem is complex

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Certification
Authority

100+ pages!

OpenSSL

TLS Protocol
40K SLOC

Crypto

C
160K
SLOC

Asm
150K
SLOC

BoringSSL

TLS Protocol
30K SLOC

Crypto

C
100K
SLOC

Asm
60K

SLOC

4

The HTTPS Ecosystem is buggy
• 20 years of attacks & fixes

Buffer overflows
Memory management
Incorrect state machines
Lax certificate parsing
Weakly or badly implemented crypto
Side channels
Error-inducing APIs
Flawed standards
…

• Many implementations
OpenSSL, Schannel, NSS, …

Still patched every month!

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Everest:

Deploying Verified-Secure Implementations
in the HTTPS Ecosystem

6

Everest Goals
• Fully verified replacement

• Widespread deployment

• Trustworthy, usable tools

TLS

X.509

HTTPS

RSA SHA

ECDH

Stdlib (e.g., buffers, bytes)

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

$ apt-get install verified_https

$ /etc/init.d/apache2 restart

Research Questions

• How do we decide whether new protocols are secure?
– Especially when interoperating with insecure protocols

• Can we make verified systems as fast as unverified?

• How do we handle advanced threats?
– Ex: Side channels

• Why should we trust automated verification tools?

• How can verification be more accessible?
– Especially to non-experts in verification

7

MSR-Redmond

INRIA

MSR-Cambridge

Chris

Hawblitzel

Cédric

Fournet

Antoine

Delignat-Lavaud

Bryan Parno

Markulf

Kohlweiss
Santiago

Zanella-Beguelin

Nik Swamy

Jonathan

Protzenko

Aseem

Rastogi

MSR-Bangalore

Tahina

Ramanandro

Barry Bond

CMU

Karthik

Bhargavan

Jean Karim

Zinzindohoue

Catalin Hritcu

Kenji

Maillard

Benjamin

Beurdouche

Christoph

Wintersteiger

Patrice

Godefroid

+ interns and many
other collaborators...

Aymeric

Fromherz

Jay

Bosamiya

Poly1305

Current Status

9

TLS

X.509

HTTPS

SHA

ECDH

Stdlib (e.g., buffers, bytes)

Crypto Algorithms

ASN.1

ChaCha

HMACPoly1305
AES-CBC

AES-GCM

RSA
4Q

EverCrypt: A Verified
Crypto Provider

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

Why Verify Crypto?
• Bugs are real, and potentially devastating!

• 24 vulnerabilities in OpenSSL’s libcrypto in ~3 years!

“These produce wrong results. The first example does so only on 32 bit,

the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be

dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress

all your other poly1305 code paths against a reference implementation.”

Side Channel Challenge (Attacks)

2000 … 2006 2007 2008 2009 2010 2011 2012 2013 2014

Protocol-level
side channels

Traffic analysis Timing attacks against
cryptographic primitives

Memory & Cache

TLS messages may reveal information
about the internal protocol state or the
application data

Combined analysis of the time and
length distributions of packets leaks
information about the application

A remote attacker may learn
information about crypto secrets by
timing execution time for various inputs

Memory access patterns may expose
secrets, in particular because caching
may expose sensitive data (e.g. by
timing)

• Hello message contents (e.g. time
in nonces, SNI)

• Alerts (e.g. decryption vs. padding
alerts)

• Record headers

• CRIME/BREACH (adaptive chosen
plaintext attack)

• User tracking
• Auto-complete input theft

• Bleichenbacher attacks against
PKCS#1 decryption and signatures

• Timing attacks against RC4 (Lucky
13)

• OpenSSL key recovery in virtual
machines

• Cache timing attacks against AES

AES cache timing

Bleichenbacher

CRIME Lucky13 DROWN

Remote timing
attacks are practical

BREACH

Tag size

Side-channel
leaks in Web
applications

ECDSA
timing

Vaudenay

• Hand-written mix of Perl and assembly

• Customized for 50+ hardware platforms

• Why?
• Performance!

Current State of the Art: OpenSSL

Features of an Ideal Library (programmer)

• Usable
• preferably in C or ASM, not “exotic” languages

• Comprehensive
• one algorithm per processor generation / bitsize

• Auto-configurable multiplexing
• best algorithm picked automatically

• Agility
• clients deal with a unified API for each family

Features of an Ideal Library (researcher)

• Verifiable
• written in a language amenable to verification

• Programmer productivity
• share as much code as possible / agile

• Auto-configurable
• doesn’t blue-screen with “missing instruction”

• Deep integration
• each implementation verifies against the same spec

• Abstraction
• clients need not know any implementation details

EverCrypt provides a comprehensive verification result
without compromising performance

Low* (C) Vale (ASM)

EverCrypt (C)

miTLS Merkle treesC client

cryptographic providers

agile, multiplexing library

clients

EverCrypt mediates between (possibly verified) clients and different implementations

EverCrypt Features
- Agility

- same functionality (e.g., hash), multiple algorithms
- Multiplexing

- same algorithm (e.g., SHA2_256), multiple implementations
- Abstraction

- clients verify against a single spec and an abstract footprint

EverCrypt Internals

EverCrypt is Comprehensive

18

Talk Overview
1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications

Cryptographic Implementation Requirements

19

Difficult to meet all three goals.

Correct control flow

and free from leakage

and side channels

Fast

Platform-agnostic

& platform-specific

optimizations

Correct

Formally prove that

implementation

matches specification

Secure

20

Verified but slow

crypto implementations

Fast but non-verified

crypto implementations

Result: Crypto implementations usually fall into one of two camps.

Time
(usec)

Perf gap

Verified

implementations

Unverified

implementation

OpenSSL Zinzindohoue

et al.

[ePrint ‘15]

Appel et al.

[ACM TOPLAS ‘15]

Time
(usec)

SHA 256 Latency [100 KB data]

sub BODY_00_15 {

$code .= <<END

#if __ARM_ARCH__>=7

@ ldr $t1,[$inp],#4

#if $i==15

...

#endif

END

}
C macros for

code specialization

C macros for target

instruction

selection

OpenSSL Performance Tricks

22

Assembly code

is a Perl string

Mix of ASM +

Perl

@V = (“r4”, “r5”, “r6”, “r7”, “r8”, “r9”, “r10”, “r11”);

for ($i=0; $i<16; $i++) {

&BODY_00_15($i, @V);

unshift(@V, pop(@V));

}

Perl variables for

register names

OpenSSL Performance Tricks

Code expansion

using loops

Register

selection using

Perl arrays

23

sub BODY_00_15 {

my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;

$code.=<<END if ($i<16);

#if __ARM_ARCH__>=7

@ ldr $t1,[$inp],#4

if $i==15

str $inp,[sp,#17*4]

endif

eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`

add $a,$a,$t2

eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]`

ifndef __ARMEB__

rev $t1,$t1

endif

#else

@ ldrb $t1,[$inp,#3]

add $a,$a,$t2

ldrb $t2,[$inp,#2]

ldrb $t0,[$inp,#1]

orr $t1,$t1,$t2,lsl#8

ldrb $t2,[$inp],#4

orr $t1,$t1,$t0,lsl#16

if $i==15

str $inp,[sp,#17*4]

endif

eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`

orr $t1,$t1,$t2,lsl#24

eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @

Sigma1(e)

#endif

END

24

Result: Code becomes difficult to

understand, debug, and formally

verify for correctness and security.

Flexible framework for writing high-performance,

proven correct and secure assembly code.

Vale: A Firmer Foundation

25

Correct Secure Fast

Flexible Syntax

Vale supports constructs

for expressing functionality

as well as optimizations.

High Assurance

Vale can be used to prove

functional correctness and

correct information flow.

High Performance

Code generated by Vale

matches or exceeds

OpenSSL’s performance.

Flexible framework for writing high-performance,

proven correct and secure assembly code.

26

Vale: A Firmer Foundation

Key Language Constructs in Vale

27

Structured

Control Flow

e.g. if, while,

and procedure

Enable proof

composition
Vary according to

the target platform

Assembly

Instructions

e.g. Mov, Rev, and

AesKeygenAssist

Optimization

Constructs

Customize code

generation

Optimization Using inline if Statements

Vale supports inline if statements, which are evaluated

during code generation, not during code execution.

Useful for selecting instructions and for unrolling loops.

inline if(platform == x86_AESNI) {

...

}

Target Instruction Selection

(Platform-dependent optimization)

inline if (n > 0) {

...

recurse(n - 1);

}

Loop Unrolling

(Platform-independent optimization)

28

29

Example

Vale Code

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code

ADD(r5, r5, 1)

ADD(r5, r5, 1)

ADD(r5, r5, 1)

ADD(r5, r5, 1)

...

Total 100 ADD

instructions

30

Example

Vale Code

Expanded

Vale AST

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code

add r5, r5, 1

add r5, r5, 1

add r5, r5, 1

add r5, r5, 1

...

Total 100 ADD

instructions

31

Example

Vale Code

Generated

Assembly Code

procedure Incr_By_N(inline n:nat) {

inline if (n > 0) {

ADD(r5, r5, 1);

Incr_By_N(n - 1);

}

}

Incr_By_N(100);

Example Vale Code

Code generated by

Vale matches or

exceeds OpenSSL’s

performance.

Cryptographic Implementation Requirements

32

Fast

Cryptographic Implementation Requirements

Correct

33

Fast

Code generated by

Vale matches or

exceeds OpenSSL’s

performance.

Proof Assistant

Vale Architecture

34

Vale Tool

AST +

Proofs

Crypto

Specification

Verified?

(Yes / No)

Crypto code in

Vale language

Lemmas

Machine

Semantics

(x86, x64, ARMv7)

F* Verifier

(based on Z3

solver)

Vale Architecture

35

Vale Tool

AST +

Proofs

Crypto

Specification

Verified?

(Yes / No)

Crypto code in

Vale language

Lemmas

Machine

Semantics

(x86, x64, ARMv7)

Or any other proof assistant

e.g. Coq, ACL2, Lean,

Dafny

Vale Architecture

36

Vale Tool

AST +

Proofs

Crypto

Specification

Crypto code in

Vale language

Lemmas

Assembly Printer

Assembly

Code

Assembler

(e.g. GAS / MASM)

AST

Machine

Semantics

(x86, x64, ARMv7)

Verified?

(Yes / No)

F* Verifier

(based on Z3

solver)

37

Vale Tool

AST +

Proofs

Machine

Semantics

(x86, x64, ARMv7)

Crypto

Specification

Crypto code in

Vale language

Lemmas

Assembly Printer

Assembler

(e.g. GAS / MASM)

Handwritten

Libraries

Trusted

Component

s

Verified

Component

s

Untrusted

Component

s

Verified?

(Yes / No)

F* Verifier

(based on Z3

solver)

38

What is it like to verify software?

Demo!

Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by F*

39

Fast

Code generated by

Vale matches or

exceeds OpenSSL’s

performance.

Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by F*

Secure

(Leakage Free)

40

Fast

Code generated by

Vale matches or

exceeds OpenSSL’s

performance.

Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through

cache usage, timing, memory accesses, etc.

➔ Residual Program State: Secrets left in registers or memory after

termination of program

Secret Information Leakage

41

Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through

cache usage, timing, memory accesses, etc.

Secret Information Leakage

42

Crypto Program

Secret

Input

Output

Public

Input
Should

NOT be

correlated

Side Channel

Observations

Information Leakage Specification

Crypto Program

Secret #1

Digital Side

Channel

Observations #1

Crypto Program

Secret #2

Digital Side

Channel

Observations #2
43

Public Inputs

=

Based on Non-

Interference

Information Leakage Specification

44

Based on Non-

Interference

Formally, for a crypto program C,

∀ pairs of secrets s1 and s2

∀ public values p,

obs(C, p, s1) = obs(C, p, s2)

45

AST

Analyzer

(in F*)

AST

Specification
Output

(Yes / No)

Solution: Verified Analysis

One-Time

Verification

Trustworthy Output

(because of proof)

Trusted but

succinct

Proof

46

Verified

Leakage

Analyzer

Leakage

Free?

(Yes / No)

Verified Leakage Analysis

AES AST / Poly-1305 AST / SHA-256 AST / …

store [rbx] ← 0

load rcx ← [rbx]

store [rbx] ← 0

store [rax] ← 10

load rcx ← [rbx]

Problems Caused by Aliasing

Does rcx contain 0 or 10?

Difficult to answer without knowing whether rax = rbx.

47

Alias Analysis is a Difficult Problem

Existing alternatives:

1. Analyze source code in a high level language

But compiler may introduce new side channels

2. Implement pointer analysis for assembly code

But analysis will be imprecise

3. Assume no aliases

But this is an unsafe assumption.

Vale is uniquely suited to use a different approach:

Reuse developer’s effort from proof of correctness. 48

Functional verification requires precisely identifying information flow.

Reusing Effort from Proof of Correctness

49

store [rbx] ← 0

store [rax] ← 10

load output ← [rbx]

To prove that output = 0 and not 10, developer should prove that rax ≠ rbx.

‘output’ should

be equal to 0

Specification Implementation

Vale requires the developer to mark memory operands that contain secrets:

Easy for developer since proving correctness requires identifying all information

flows.

Since these annotations are checked by the verifier, they are untrusted.

Lightweight Annotations for Memory Taint

50

load rax ← [rdx] @secret

Cryptographic Implementation Requirements

Correct

Vale supports

assertions that are

checked by Dafny

Secure

51

Vale checks for

leakage via state and

digital side channels.

Fast

Code generated by

Vale matches or

exceeds OpenSSL’s

performance.

Examples of Using Vale

A few examples of the many cryptographic programs verified in Vale:

1. SHA-256 on ARMv7 (ported from OpenSSL)

2. Poly1305 on x64 (ported from OpenSSL)

3. SHA-256 on x86

4. AES-CBC and AES-GCM (with AESNI) on x64

After fixing the issues, all programs were proved correct and secure using Vale.

Discovered leakage on stack.

Confirmed a previously known bug.

52

1. Vale’s specifications + lemmas were reusable across

platforms (x86, x64, ARM).

2. Porting OpenSSL’s Perl tricks required understanding and
proving invariants.

Some of OpenSSL’s optimizations were automatically

proved by the verifer.

Key Lessons

53

Vale Leakage Analysis AES CBC Poly1305 1st SHA SHA Port

12 6 5 0.5 6 0.75

54

Verification Effort
In person-months

Tool Development

Crypto Implementations

Vale Summary

● Vale is a framework for generating and verifying crypto implementation that

is correct, secure, and fast for arbitrary architectures.

● Vale’s flexible syntax allows writing assembly code that OpenSSL

expresses using ad-hoc Perl scripts, C preprocessor macros, and custom

interpreters.

● Vale supports verified analysis of code, e.g., information leakage analysis.

55

56

Talk Overview
1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications

Verified C With the HACL* Architecture

High-level
specifications

Optimized stateful
code≈

Functionally
equivalent

Low*
(subset of F*)

C library

GCC, CompCert, Clang

OCaml
executable

KreMLinF* compiler

Assembly
code

F*

HACL*

57

HACL* SHA example

// F* code
let _Ch x y z =

H32.logxor (H32.logand x y)
(H32.logand (H32.lognot x) z)

…
let shuffle_core hash block ws k t =

…
let e = hash.(4ul) in
let f = hash.(5ul) in
let g = hash.(6ul) in
…
let t1 = …(_Ch e f g)… in
let t2 = … in

// C code
…
uint32_t e = hash_0[4];
uint32_t f1 = hash_0[5];
uint32_t g = hash_0[6];
…
uint32_t t1 = …(e & f1 ^ ~e & g)…;
uint32_t t2 = …;

Verified Interoperation
Between C and Assembly

• Low* can be extracted to C

• Vale verifies assembly code

• We verifiably interoperate between C and assembly

• Challenges:
─ Different memory models

─ Calling conventions vary based on hardware, OS, compiler

─ Different security mechanisms for preventing side channels

Verified Interoperation
Between C and Assembly
• Reconciling Memory

─ A map from the Low* memory model to Vale’s
─ A library of views that capture the layout of arrays

• Calling Conventions
─ A generic trusted wrapper sets up the initial register state
─ A combinator captures that a Vale procedure (mem -> mem) can

“morally” be executed with a suitable effect when in Low*

• Security
─ (Paper) proof unifying sequences of Low* and Vale observations

61

Talk Overview
1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications

Illustrate crypto
construction verification
on TLS 1.3 record layer

AEAD

Stream

Encryption

TLS record

protection

AES128

AES256

Poly1305

Cipher

IND-

PRF

Chacha2

0

GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Record Layer

Protection

Symmetric Cryptography

• Security definition

• New constructions

• Concrete security bounds

• Verification

Crypto assumption

Verified by typing

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
RSA.html
PRF.html

Client Server

decrypt
encrypt TLS record layer

random

sampling

Client Server

decrypt

ideal encryption log

#1

encrypt

the adversary can distinguish
between real and ideal
only with a small probability

table

lookup

T

a

g

PRFAEAD Key

IV || 0

One-time MAC key

PRF

IV || 1

PRF

IV || n

…

……
lengths of

plaintext and

additional data

Cipher

tag

……

One-time MAC pad

…

Given

• a block cipher, modelled as
a pseudo-random function

• a field for computing one-time MACs

• injective message encodings

We program and verify a generic
authenticated stream encryption
with associated data.

We show

• functional correctness

• security (reduction to PRF assumption)

• concrete security bounds for the
3 main record ciphersuites of TLS

AEAD

Stream

Encryption

TLS record

protection

TLS API

LHA

E

AES128

AES256

Poly1305

Cipher

IND-

PRF

AES

CBC

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

arithmetic correctness

(field computations)

functional correctness

(low-level assembly)

abstraction

& agility

security

idealization

injectivity

loops & stateful invariants

(reasoning on ideal logs)

TLS-specific mechanisms

• fragmentation

• content multiplexing

• length-hiding, padding

• re-keying

• 0-RTT, 0.5-RTT

many kinds of proofs

not just code safety!

TLS FFI

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html

AEAD

Stream

Encryption

IND-

PRF

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Probabilistic proof

(on paper) in abstract

field + F* verification
Standard

crypto

assumption

F* type-based verification on code

formalizing game-based reduction

Theorem: the 3 main AEAD ciphersuites are
secure for TLS 1.2 and 1.3 except with
probabilities

𝑞𝑒 is the number of encrypted records;

𝑞𝑑 is the number of chosen-ciphertext decryptions;

𝑞𝑏 is the total number of blocks for the PRF

StatefulLHAE.html
StatefulPlain.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html

68

Talk Overview

1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications

Spec.SHA2.fst

Spec.SHA2.fsti

implements

val compress:
a:sha_alg -> state a -> bytes -> state a

• Agile specifications limit code duplication!

• Abstract specifications tame context proliferation

This maximizes spec compactness

val compress:
a:sha_alg → state a → array u8 → Stack unit

let state a = function
| SHA2_224 | SHA2_256 -> array u32
| SHA2_384 | SHA2_512 -> array u64

This could be compiled as a union.

However, this is not idiomatic or

efficient.

let compress_224 = compress SHA2_224
let compress_256 = compress SHA2_256
let compress_384 = compress SHA2_384
let compress_512 = compress SHA2_512

Instead, we rely on partial evaluation:

73

Talk Overview

1. Introduction to Everest and EverCrypt

2. Verifying Assembly

3. Verifying C + interop

4. Verifying Cryptographic Constructions

5. Achieving Agility and No-Cost Abstraction

6. Verified Applications

EverCrypt: Performance

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

matches or exceeds

or unverified

Average

cycles/byte
EverCrypt (portable)

OpenSSL (portable)

EverCrypt (targeted)

OpenSSL (targeted)

Average

cycles/byte
EverCrypt
(targeted)

OpenSSL
(targeted)

Implementation Radix Language CPU cycles

donna64 51 C 159634

fiat-crypto 51 C 145248

amd64-64 51 Assembly 143302

sandy2x 25.5 Assembly + AVX 135660

EverCrypt (portable) 51 C 135636

OpenSSL 64 Assembly + ADX 118604

Oliveira et al. 64 Assembly + ADX 115122

EverCrypt (targeted) 64
C + Assembly +

ADX
113614

Unverified

Verified

Performance: Merkle tree
Average

insertions/sec

Bitcoin’s implementation: 950K ins/sec

EverCrypt is 2.8x faster!

Summary
• Crypto software must be fast and secure

• New verification tools & techniques make this possible
─ EverCrypt provides verified secure, agile, high-perf crypto

• Everest will showcase the power of verification and its
applicability to real-world security problems

82

https://project-everest.github.io/

Thank you!
parno@cmu.edu

