Multi-Tuple Leakage Detection and the Dependent Signal Issue

Olivier Bronchain Tobias Schneider François-Xavier Standaert

CHES 2019, Atlanta, USA
Table of Contents

Introduction

Leakage Detection

Multi-Tuple Leakage Detection

Conclusion
Content

Introduction

Leakage Detection

Multi-Tuple Leakage Detection

Conclusion
Side-Channel Issue

Encryption on physical devices:
- Standard utilization
Side-Channel Issue

Encryption on physical devices:
- Standard utilization
- But with any physical signals
Side-Channel Issue

Encryption on physical devices:

- Standard utilization
- But with any physical signals
- Possibly containing secret information
Side-Channel Issue

Encryption on physical devices:
- Standard utilization
- But with any physical signals
- Possibly containing secret information

Side-channel Attacks:
- Known to be hard to prevent
- Hard to evaluate as well
Encryption on physical devices:
- Standard utilization
- But with any physical signals
- Possibly containing secret information

Side-channel Attacks:
- Known to be hard to prevent
- Hard to evaluate as well

Two evaluation approaches:
- Attack based
- Leakage detection
Can directly mount attacks:

1. Collect measurements
Attack Based Evaluation

Can directly mount attacks:
1. Collect measurements
2. Perform an attack
Can directly mount attacks:
1. Collect measurements
2. Perform an attack
3. Retrieve the correct sub-key
Attack Based Evaluation

Can directly mount attacks:
1. Collect measurements
2. Perform an attack
3. Retrieve the correct sub-key

This requires:
1. Long measurement period
2. Skilled/expert knowledge
3. Distinguish 1 sub-key within 256
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.

- Feed the core with two different sets of inputs
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.

- Feed the core with two different sets of inputs
- Record the corresponding traces
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.

- Feed the core with two different sets of inputs
- Record the corresponding traces
- Observe differences between the two sets
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.

How does it compare with attack based evaluations:
- Shortened measurement period (Possibly)
- No skilled/expert knowledge
Leakage Detection Based Evaluation

Leakage detection searches for dependency between manipulated data and physical traces.

How does it compare with attack based evaluations:

- Shortened measurement period (Possibly)
- No skilled/expert knowledge

A good first check but:

- Risk of false positives and false negatives
Content

Introduction

Leakage Detection

Multi-Tuple Leakage Detection

Conclusion
Leakage Detection

Find a difference between the two sets:
Leakage Detection

Find a difference between the two sets:

1. Select a point in time
Leakage Detection

Find a difference between the two sets:

1. Select a point in time
2. Record traces to observe a distribution

Distributions

- No difference found
Find a difference between the two sets:

1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
Leakage Detection

Find a difference between the two sets:
1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
4. Observe its binary output

The statistical test can search for differences in:
- Means with the Welch’s t-test
- Distributions with χ^2-test

No difference found
Leakage Detection

Find a difference between the two sets:
1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
4. Observe its binary output
Repeat with more measurements if needed

The statistical test can search for difference in:

- Means with the Welch’s t-test
- Distributions with χ^2-test

No difference found
Leakage Detection

Find a difference between the two sets:
1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
4. Observe its binary output

Repeat with more measurements if needed

The statistical test can search for differences in:
- Means with the Welch’s t-test
- Distributions with χ^2-test
- . . .
Leakage Detection

Find a difference between the two sets:
1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
4. Observe its binary output

Repeat with more measurements if needed

The statistical test can search for difference in:
- Means with the Welch’s t-test
- Distributions with χ^2-test
- . . .
Leakage Detection

Find a difference between the two sets:
1. Select a point in time
2. Record traces to observe a distribution
3. Perform a statistical test
4. Observe its binary output
Repeat with more measurements if needed

The statistical test can search for difference in:
- Means with the Welch’s t-test \Rightarrow Most popular
- Distributions with χ^2-test
- ...
Leakage Detection: TVLA

The traces contain multiple points in time:

1. Select **all** the points in time
Leakage Detection: TVLA

The traces contain multiple points in time:

1. Select **all** the points in time
2. Record traces to observe a distribution
Leakage Detection: TVLA

The traces contain multiple points in time:

1. Select all the points in time
2. Record traces to observe a distribution
3. Perform independent statistical test

No difference found if:

- At least one of the tests goes above a threshold

Selected thanks to:

- Desired confidence
- Number of considered time samples
- Assuming independence between them
Leakage Detection: TVLA

The traces contain multiple points in time:
1. Select **all** the points in time
2. Record traces to observe a distribution
3. Perform **independent** statistical test
4. Observe their binary outputs

Difference found if:
- At least one of the tests goes above a threshold
- Selected thanks to:
 - Desired confidence
 - Number of considered time samples
 - Assuming independence between them
Leakage Detection: TVLA

The traces contain multiple points in time:
1. Select all the points in time
2. Record traces to observe a distribution
3. Perform independent statistical test
4. Observe their binary outputs
Leakage Detection: TVLA

The traces contain multiple points in time:
1. Select all the points in time
2. Record traces to observe a distribution
3. Perform independent statistical test
4. Observe their binary outputs

Difference found if:
- At least one of the tests goes above a threshold
- Selected thanks to:
 - Desired confidence
 - Number of considered time samples
 - Assuming independence between them
Leakage Detection: TVLA

The traces contain multiple points in time:

1. Select **all** the points in time
2. Record traces to observe a distribution
3. Perform **independent** statistical test
4. Observe their binary outputs

Difference found if:

- At least one of the tests goes above a threshold
Leakage Detection: TVLA

The traces contain multiple points in time:
1. Select all the points in time
2. Record traces to observe a distribution
3. Perform independent statistical test
4. Observe their binary outputs

Difference found if:
- At least one of the tests goes above a threshold
- Selected thanks to:
 - Desired confidence
 - Number of considered time samples
 - Assuming independence between them
Limitations to TVLA

TVLA performs independent t-test:

- Impossible to take advantage of multivariate leakage
- Could lead to reduced measurement period
- Independence in the signal is usually not met:
 - Wrong assumption while setting the threshold
 - Hard to interpret results (especially negative ones)
Limitations to TVLA

TVLA performs independent t-test:

- Impossible to take advantage of multivariate leakage
Limitations to TVLA

TVLA performs independent t-test:
- Impossible to take advantage of multivariate leakage
- Could lead to reduced measurement period
Limitations to TVLA

TVLA performs independent t-test:
- Impossible to take advantage of multivariate leakage
- Could lead to reduced measurement period

Independence in the signal is usually not met:
Limitations to TVLA

TVLA performs independent t-test:
- Impossible to take advantage of multivariate leakage
- Could lead to reduced measurement period

Independence in the signal is usually not met:
- Wrong assumption while setting the threshold
Limitations to TVLA

TVLA performs independent t-test:
- Impossible to take advantage of multivariate leakage
- Could lead to reduced measurement period

Independence in the signal is usually not met:
- Wrong assumption while setting the threshold
 - Hard to interpret results (especially negative ones)
Content

Introduction

Leakage Detection

Multi-Tuple Leakage Detection

Conclusion
Multi-Tuple Leakage Detection: General Idea

Approach:

- **t-test**
 - Replace the independent tests by a single one
 - Natural candidate: Hotelling’s T^2-test
 - Do not assume independence
 - Need to invert a covariance matrix
 - Not always applicable

- **D-test**
 - Assume independence
 - Hard to interpret results
Multi-Tuple Leakage Detection: General Idea

Approach:
- Replace the independent tests by a single one
Multi-Tuple Leakage Detection: General Idea

Approach:
- Replace the independent tests by a single one

Multivariate statistical test

Single binary output
Multi-Tuple Leakage Detection: General Idea

Approach:
- Replace the independent tests by a single one

Natural candidate: Hotelling’s T^2-test
- Do not assume independence
- Need to invert a covariance matrix
 - Not always applicable
Multi-Tuple Leakage Detection: General Idea

Approach:
- Replace the independent tests by a single one

Natural candidate: Hotelling’s T^2-test
- Do not assume independence
- Need to invert a covariance matrix
 - Not always applicable

Heuristic alternative: D-test
- Assume independence
 - Hard to interpret results
Traces Parameter: Density

Density of informative points:
- The proportion of leaking points
- t-test showing difference with ∞ of measurements
Traces Parameter: Density

Density of informative points:

- The proportion of leaking points
- t-test showing difference with ∞ of measurements

Typical settings:

- Protected software: low density, long traces
- Hardware unprotected: high density, short traces

$\begin{align*}
\text{Density} = 0.1 \\
\text{Density} = 0.2 \\
\text{Density} = 0.5 \\
\text{Density} = 0.9
\end{align*}$
Traces Parameter: Density

Density of informative points:

- The proportion of leaking points
- t-test showing difference with ∞ of measurements

![Diagram showing traces with varying density](image)

- t-test
- Density = 0.2
Traces Parameter: Density

Density of informative points:

- The proportion of leaking points
- t-test showing difference with ∞ of measurements

![Graph showing density of informative points]

t-test

\rightarrow Density = 0.5
Traces Parameter: Density

Density of informative points:

- The proportion of leaking points
- t-test showing difference with ∞ of measurements

![Diagram showing density of informative points]

\rightarrow Density = 0.9
Traces Parameter: Density

Density of informative points:

- The proportion of leaking points
- t-test showing difference with ∞ of measurements

Typical settings:

- Protected software: low density, long traces
- Hardware unprotected: high density, short traces

\rightarrow Density = 0.9
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:

- Both methods suffer from a low density
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:
- Both methods suffer from a low density
- Multi-Tuple more than the TVLA
Multi-Tuple Leakage Detection: Features

From simulations with fixed trace length:

- Both methods suffer from a low density
- Multi-Tuple more than the TVLA

Reduced data complexity with higher density
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:

\[\log(\text{Trace length}) \]
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:

<table>
<thead>
<tr>
<th>Trace length</th>
<th># of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x4</td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
</tr>
</tbody>
</table>

Both methods take advantage of longer traces. Multi-Tuple gains more than the TVLA. Reduced data complexity with the number of time samples. The jointly processed trace size is limited for Hotelling's test because of covariance matrix inversion (~ 2000). Possibility to run multiple Hotelling's tests in parallel.
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:

- Both methods take advantage of longer traces.
- Multi-Tuple gains more than the TVLA.
- Reduced data complexity with the number of time samples.
- Possibility to run multiple Hotelling’s tests in parallel.
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:
- Both methods take advantage of longer traces

![Graph showing comparison between TVLA and Multi-Tuple leakage detection methods.](image-url)
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:

- Both methods take advantage of longer traces
- Multi-Tuple gains more than the TVLA
Multi-Tuple Leakage Detection: Parameters

From simulations with fixed density:
- Both methods take advantage of longer traces
- Multi-Tuple gains more than the TVLA

- Reduced data complexity with the number of time samples
- The jointly processed trace size is limited for Hotelling’s test because of covariance matrix inversion (∼2000):
 - Possibility to run multiple Hotelling’s tests in parallel
Two extreme settings:

White Box: everything is known about the design

Black Box: nothing is known about the design

How to perform Leakage Detection in these settings?
Practical Evaluation Scenarios

Two extreme settings:
- White Box: everything is known about the design
Practical Evaluation Scenarios

Two extreme settings:

- White Box: everything is known about the design
- Black Box: nothing is known about the design
Practical Evaluation Scenarios

Two extreme settings:
- White Box: everything is known about the design
- Black Box: nothing is known about the design

How to perform Leakage Detection in these settings?
Practical Evaluation Scenarios: White Box

In White Box:

- Prior information about leaking points
- Can reduce traces
- Can invert the covariance matrix (Hotelling’s T^2-test)
- High density

As a result:

- Smaller measurement period
- Easy interpretation of the confidence (no ⊥⊥ assumption)
Practical Evaluation Scenarios: White Box

In White Box:
- Prior information about leaking points

\[P_1 \text{ or } P_2 \rightarrow C_1 \text{ or } C_2 \]
Practical Evaluation Scenarios: White Box

In White Box:
- Prior information about leaking points
- Can reduce traces

As a result:
- Smaller measurement period
- Easy interpretation of the confidence (no assumption)
Practical Evaluation Scenarios: White Box

In White Box:
- Prior information about leaking points
 - Can reduce traces
 - Can invert the covariance matrix (Hotelling’s T^2-test)
 - High density

As a result:
- Smaller measurement period
- Easy interpretation of the confidence (no \perp assumption)
Practical Evaluation Scenarios: White Box

In White Box:
- Prior information about leaking points
 - Can reduce traces
 - Can invert the covariance matrix (Hotelling’s T^2-test)
 - High density

As a result:
- Smaller measurement period
- Easy interpretation of the confidence (no \perp assumption)
Practical Evaluation Scenarios: Black Box

In Black Box:

- No prior information about leaking points
- Can't reduce traces
- Can't always invert the covariance matrix
- Fixed density

As a result:

- Possibly larger measurement period
- Independent assumption needed
- Heuristic required for confidence level interpretation:
 - TVLA: too conservative
 - D-test: too optimistic
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points

- Can’t reduce traces
- Can’t always invert the covariance matrix
- Fixed density

As a result:
- Possibly larger measurement period
- Independent assumption needed
- Heuristic required for confidence level interpretation:
 - TVLA: too conservative
 - D-test: too optimistic
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can’t reduce traces

As a result:
- Possibly larger measurement period
- Independent assumption needed
- Heuristic required for confidence level interpretation:
 - TVLA: too conservative
 - D-test: too optimistic
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can't reduce traces
 - Can't always invert the covariance matrix
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can’t reduce traces
 - Can’t always invert the covariance matrix
 - Fixed density
- Possibly larger measurement period
- Independent assumption needed
- Heuristic required for confidence level interpretation:
 - TVLA: too conservative
 - D-test: too optimistic
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can't reduce traces
 - Can't always invert the covariance matrix
 - Fixed density

As a result:
- Possibly larger measurement period
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can’t reduce traces
 - Can’t always invert the covariance matrix
 - Fixed density

As a result:
- Possibly larger measurement period
- Independent assumption needed
Practical Evaluation Scenarios: Black Box

In Black Box:
- No prior information about leaking points
 - Can't reduce traces
 - Can't always invert the covariance matrix
 - Fixed density

As a result:
- Possibly larger measurement period
- Independent assumption needed
 - Heuristic required for confidence level interpretation:
 - TVLA: too conservative
 - D-test: too optimistic
Conclusion

Physical signals are not likely to be independent across time
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
 - Straight forward interpretation of the confidence level
 - And sometimes reduction the measurement period
 - Loose intuition about the POIs
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
 ▶ Straight forward interpretation of the confidence level
 ▶ And sometimes reduction the measurement period
 ▶ Loose intuition about the POIs

2. If not, must rely on heuristics:
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
 - Straight forward interpretation of the confidence level
 - And sometimes reduction the measurement period
 - Loose intuition about the POIs

2. If not, must rely on heuristics:
 - TVLA: too conservative
 - D-test: too optimistic
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
 - Straight forward interpretation of the confidence level
 - And sometimes reduction the measurement period
 - Loose intuition about the POIs

2. If not, must rely on heuristics:
 - TVLA: too conservative
 - D-test: too optimistic

Evaluation Hardness
Conclusion

Physical signals are not likely to be independent across time

1. If applicable, Hotelling’s T^2-test provides:
 - Straight forward interpretation of the confidence level
 - And sometimes reduction the measurement period
 - Loose intuition about the POIs

2. If not, must rely on heuristics:
 - TVLA: too conservative
 - D-test: too optimistic

Thanks!

Evaluation Hardness

github.com/obronchain/multituple_leakage_detection