Fast, Furious and Insecure

Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs and Bart Preneel

COSIC
an imec research group at KU Leuven
Passive Keyless Entry and Start

Challenge

Response
The Tesla Model S key fob

PCB back
- UHF antenna
- 3D LF antenna
- MicRF112 transmitter IC

PCB front
- TI TMS37F128 (X-Ray)
- TMS37126 (transponder)
- SPI
- MSP430 (MCU)
Getting started

- Cannot order the IC’s from Farnell/Digikey
- Uncommon package (30 pin TSSOP – 0.5mm pitch)
- Almost no public information on these chips (NDA)
 - The information that is available is inconsistent
Connecting to the TMS37126
The Serial Peripheral Interface (SPI)

Uncovering undocumented SPI commands

• SPI BUSY line indicates when the slave is ready for the next byte
 • The transponder indicates an error by pulling busy high or low for a long period

• Observation 1:
 • Error if CMD value is incorrect
• Observation 2:
 • If LEN is 0xFF and the CMD value is correct we get an error after the correct number of bytes (LEN) has been sent
Uncovering undocumented SPI commands

<table>
<thead>
<tr>
<th>Action</th>
<th>LEN</th>
<th>CMD</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST40(C, K1)</td>
<td>0x06</td>
<td>0x84</td>
<td>NA</td>
</tr>
<tr>
<td>DST_UNK(C, K1)</td>
<td>0x06</td>
<td>0x85</td>
<td>NA</td>
</tr>
<tr>
<td>DST40(C, K2)</td>
<td>0x06</td>
<td>0x86</td>
<td>NA</td>
</tr>
<tr>
<td>DST_UNK(C, K2)</td>
<td>0x06</td>
<td>0x87</td>
<td>NA</td>
</tr>
<tr>
<td>Change K1</td>
<td>0x07</td>
<td>0x01</td>
<td>0x11</td>
</tr>
<tr>
<td>Change K2</td>
<td>0x07</td>
<td>0x01</td>
<td>0x12</td>
</tr>
</tbody>
</table>
Obtaining MSP430 firmware

- Olimex MSP430-JTAG-TINY-V2 programmer
- JTAG fuse wasn’t blown
MSP430 Static firmware analysis

- Interrupt Vector Table (IVT)
- References to Special Function Registers (SFR)
 - SPI transmit and receive buffers
MSP430 Dynamic firmware analysis

• MSPDebug + Olimex MSP430-JTAG-TINY-V2
• MSP430F1232 supports up to two breakpoints
• Caveat: some debug pins are shared with IO and can trigger interrupts

• Inspect interesting routines + dump RAM and register values
 • Retrieve bytes exchanged over SPI

• The firmware is only using CMD 0x86 (DST40) during normal operation
Texas Instruments
Digital Signature Transponder (DST)

• DST40
 • Introduced in 2000
 • 40-bit key
 • Security Analysis of a Cryptographically-Enabled RFID Device (2005)
 • S Bono, M Green, A Stubblefield, A Juels, AD Rubin
 • Used for immobilizer by Ford, Lincoln, Mercury, Nissan and Toyota
 • Exxon-Mobil’s Speedpass payment system
DST40 Cipher

Key schedule is executed every 3rd round starting in the 2nd
RF reverse engineering
Key fob RF operation

• Two separate systems:
 • Remote Keyless Entry (RKE)
 • Actions are performed by pressing a button
 • One way communication
 • Passive Keyless Entry and Start (PKES)
 • The car is unlocked automatically if the key fob is in proximity of the vehicle
 • Two way communication
Passive Keyless Entry and Start

• Ultra High Frequency (433.92 MHz)
 • From key fob to car
 • Easy to receive using widely available tools
 • SDR or Yard Stick One (CC1111)

• Low Frequency (134.2 kHz)
 • From car to key fob
 • More challenging to receive
Low Frequency

- Proxmark3
 - Added DST transponder code for the AT91SAM microcontroller
 - Hardware modification to boost receiver range
 - Custom peak detect code for the FPGA
Receiving LF signals
PKES Protocol analyzer

Yard Stick One (UHF) Proxmark 3 (LF)
PKES protocol
A car only attack

- Receive the 40-bit challenge
 - 2^{16} keys produce the correct response
 - Guess a key and transmit the response
- After on average 2^{23} guesses you will have a valid challenge response pair
- Assuming 1 guess per second \rightarrow 97 days
- Can be automated
Proof of Concept
DST40 key recovery

- 40-bit challenge is combined with a 40-bit key resulting in a 24-bit response
- For each 40-bit challenge multiple keys produce the same response
 - Need two challenge response pairs to recover the key
DST40 key recovery

- The key fob cannot verify the sender of a challenge
 - The key fob replies to any challenge it receives as long as the car ID is correct
- Time-Memory Trade-Off Table
 - Simplified pseudocode:

    ```
    challenge = 0x636f736963
    for key in range (0, 2^{40}):
        response = DST40(challenge, key)
        responseFile.append(key)
    ```
- 2^{24} files each containing ~2^{16} 40-bit keys
Cloning a key fob

- Retrieve the 2-byte car ID (sniff or brute force)
- Send challenge 0x636f736963 to the key fob
- Use the response to select the correct TMTO file
- Send a different challenge and record the response
- Test the remaining 2^{16} keys

```python
for key in TMTO_File:
    resp = DST40(challenge2, key)
    if resp == response2:
        return key
```
Proof of Concept attack

- USB Power bank
- Raspberry Pi 3 Model B+
- Proxmark3 and Yard Stick One
Responsible disclosure
Responsible disclosure

• First notified Tesla on 31/08/2017
 • Tesla vehicles produced from June 2018 onwards use a new key fob
 • OTA update includes a Pin to Drive feature and the ability to disable PKE
Conclusions (yes, this is 2019)

• Some manufacturers and chip vendors still rely on:
 • proprietary cryptography
 • NDAs and secrecy of datasheets
 • (See also Helena Handschuh’s talk)
 • tier 1 or tier 2 suppliers to get security right
 • secrecy of firmware
Conclusions

Cryp-tomer
@TomerAshur

Just one more thing. Everybody is making fun of Tesla for using a 40-bit key (and rightly so). But Tesla at least had a mechanism we could report to and fixed the problem once informed. @McLarenAuto, @KarmaAutomotive, and @UKTriumph use the same system and ignored us.

6:12 PM - 10 Sep 2018

243 Retweets 601 Likes

💬 10 🔗 243 🧡 601 📧
Demo video:
https://www.youtube.com/watch?v=aVIYuPzmJoY
Oops!... I did it again.
The new key fob

• Hardware looks identical, JTAG is locked and the key fob is using DST80
• Trick the key fob into computing DST40 using only half of the 80-bit key!
 • Allows to recover the DST80 key with twice the amount of resources
 • 2 x 5,4TB and 2 x 2s
 • The attack requires close range to the fob, making it more difficult to execute
• Cars being produced today are already using a new (new) key fob
• Tesla has already begun to roll out a software update to applicable customers!
Software Update

The status bar will now indicate when there is a software update available to be downloaded. Tapping the icon will take you directly to Controls > Software for additional details regarding the update.

Key Fob Security Update

An update is now available for Model S key fob (v2). To update key fobs, follow the instructions displayed when tapping Controls > Service > Key Fob Update. This update fixes bugs and improves security.

New Language Support

You can now select Norwegian as your language. To update your language setting, tap Controls > Display and select the desired option from the Language drop down menu.

This release contains minor improvements and bug fixes.

Previous Release Notes

Chess

Play Chess against your passenger or challenge four different levels of artificial intelligence. Move by dragging and dropping the chess piece during your turn. As with all Tesla Arcade games, you can play when your car is in PARK by tapping the

Car must be in PARK

Questions?

@LennertWo
@CosicBe
lennert.wouters@esat.kuleuven.be