
Fully Automated Differential Fault 
Analysis on Software 
Implementations of Block Ciphers

Xiaolu Hou1, Jakub Breier2, Fuyuan Zhang3, and Yang Liu2

1 National University of Singapore, Singapore
2 HP-NTU Digital Manufacturing Corporate Lab, Singapore
3 Max Planck Institute, Karlsruhe, Germany

CHES’19, 28 Aug 2019 



Data Flow Graph of Software Implementation of AES
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Our Contribution
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• We developed a method that works on assembly implementations of 
block ciphers, it identifies spots vulnerable to differential fault 
analysis (DFA) by bit flips, and verifies whether those spots are 
exploitable

• Our method is sound – if it marks the spot as exploitable, it is 
provably exploitable

–The prototype tool outputs the identified attack

• Furthermore, we developed a way to check how many rounds should 
be protected by a countermeasure to be able to avoid DFA to 
vulnerable spots



Tool for Automated DFA on 
Assembly 
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Tool for Automated DFA on Assembly – TADA 
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• The main idea – feed the assembly code to the tool and get the 
vulnerabilities, together with a way how to exploit them

• Static analysis module analyzes the propagation of the fault and 
determines what information can be extracted from known data

• SMT solver module solves the DFA equations, verifying whether 
an attack exists



TADA – Detailed Process Flow
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Sample Cipher and DFG Construction
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# Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1



Properties of the DFG – Explained  
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Linear edge

Non-linear edge

Node r3 (3) affects node r1 (6)

Distance between r0 (0) and r0 (4) is 1

1

0

0

Distance between r0 (0) and x+ (7) is also 1



TADA – Detailed Process Flow
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Vulnerable Instructions 
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• For a vulnerable instruction, each of its input nodes that is not known 
can be a target node or/and a vulnerable node

• A fault will be injected into the vulnerable node so that it might reveal 
information about the target node

• TADA creates a subgraph for each pair of target and vulnerable node



Find Vulnerable Instruction
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# Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1 Recall that  r2 (2) and r3 (3) are the key nodes



TADA – Detailed Process Flow
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TADA – Detailed Process Flow
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Update Known Nodes
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TADA – Detailed Process Flow
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Not yet!



One More Iteration
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TADA – Detailed Process Flow
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Evaluation Results

18

[TBM14] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential fault analysis on the 

families of Simon and Speck ciphers. FDTC 2014.

[Gir05] Christophe Giraud. DFA on AES. Conference on AES 2005.



Countermeasures

How many rounds to protect?



Standard Duplication/Triplication Countermeasure
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• Popular in industrial applications

• Either area or time redundancy

• Expensive overheads

• Resources can be saved in case it is 
not necessary to protect the entire 
cipher

Encrypt Encrypt

Plaintext

Ciphertext Ciphertext

Compare



Countermeasure implementation based on TADA
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• After the previous analysis, the target and the vulnerable nodes 
change to target and exploitable nodes – the latter one was proven 
to be exploitable by TADA

• We are now trying to find the earliest node possible to affect the 
target node, such that there are no collisions

• This information will tell us what is the earliest round where the fault 
can be injected



Results – AES 
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How Many Rounds to Protect?

23

Resources for countermeasures can be saved as follows:

– SIMON – over 90% (3 out of 32 rounds)

– SPECK – over 81% (4 out of 22 rounds)

– AES – over 60% (4 out of 10 rounds)

– PRIDE – over 80% (4 out of 20 rounds)



Conclusion
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Conclusion
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• We showed a way to automate differential fault analysis on block 
cipher implementations

• Analysis works on a modified data flow graph, vulnerabilities are 
checked with SMT solver for exploitability

• Countermeasure implementations can be done more efficiently with 
the support of automated evaluation – number of rounds can be 
reduced

• For future, it would be good to extend the method to other fault 
models and other fault analysis techniques
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