
Fully Automated Differential Fault
Analysis on Software
Implementations of Block Ciphers

Xiaolu Hou1, Jakub Breier2, Fuyuan Zhang3, and Yang Liu2

1 National University of Singapore, Singapore
2 HP-NTU Digital Manufacturing Corporate Lab, Singapore
3 Max Planck Institute, Karlsruhe, Germany

CHESô19, 28 Aug 2019

Data Flow Graph of Software Implementation of AES

2

Our Contribution

3

ÅWe developed a method that works on assembly implementations of
block ciphers, it identifies spots vulnerable to differential fault
analysis (DFA) by bit flips, and verifies whether those spots are
exploitable

ÅOur method is soundïif it marks the spot as exploitable, it is
provably exploitable

ïThe prototype tool outputs the identified attack

ÅFurthermore, we developed a way to check how many rounds should
be protected by a countermeasure to be able to avoid DFA to
vulnerable spots

Tool for Automated DFA on
Assembly

4

Tool for Automated DFA on Assembly ïTADA

5

Analyze
assembly

file

Generate
custom

DFG

Construct
DFA

attack

Find the
key

ÅThe main idea ïfeed the assembly code to the tool and get the
vulnerabilities, together with a way how to exploit them

ÅStatic analysis module analyzes the propagation of the fault and
determines what information can be extracted from known data

ÅSMT solver module solves the DFA equations, verifying whether
an attack exists

TADA ïDetailed Process Flow

6

Sample Cipher and DFG Construction

7

Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1

Properties of the DFG ïExplained

8

Linear edge

Non-linear edge

Node r3 (3) affects node r1 (6)

Distance between r0 (0) and r0 (4) is 1

1

0

0

Distance between r0 (0) and x+ (7) is also 1

TADA ïDetailed Process Flow

9

Vulnerable Instructions

10

ÅFor a vulnerable instruction, each of its input nodes that is not known
can be a target node or/and a vulnerable node

ÅA fault will be injected into the vulnerable node so that it might reveal
information about the target node

ÅTADA creates a subgraph for each pair of target and vulnerable node

Find Vulnerable Instruction

11

Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1 Recall that r2 (2) and r3 (3) are the key nodes

TADA ïDetailed Process Flow

12

TADA ïDetailed Process Flow

13

Update Known Nodes

14

TADA ïDetailed Process Flow

15

Not yet!

One More Iteration

16

TADA ïDetailed Process Flow

17

Evaluation Results

18

[TBM14] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential fault analysis on the

families of Simon and Speck ciphers. FDTC 2014.

[Gir05] Christophe Giraud. DFA on AES. Conference on AES 2005.

