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Data Flow Graph of Software Implementation of AES
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Our Contribution

AWe developed a method that works on assembly implementations of
block ciphers, it identifies spots vulnerable to differential fault
analysis (DFA) by bit flips, and verifies whether those spots are
exploitable

AOur method is sound 7 if it marks the spot as exploitable, it is
provably exploitable

i The prototype tool outputs the identified attack
AFurthermore, we developed a way to check how many rounds should

be protected by a countermeasure to be able to avoid DFA to
vulnerable spots




Tool for Automated DFA on
Assembly




Tool for Automated DFA on Assembly T TADA

AThe main idea i feed the assembly code to the tool and get the
vulnerabilities, together with a way how to exploit them

A Static analysis module analyzes the propagation of the fault and
determines what information can be extracted from known data

A SMT solver module solves the DFA equations, verifying whether
an attack exists
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Sample Cipher and DFG Construction

LD rO X+
LD rl X+
LD r2 keyl+
LD r3 keyl+
AND rOrl
EOR rO r2
EOR 1 r3
ST x+ 10
ST x+rl

0 N OO o1 b WO N+ O

ciphertext node
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Properties of the DFG T Explained

ciphertext node

Linear edge

Non-linear edge

Node r3 (3) affects node rl (6)

Distance between rO (0) and r0 (4) is 1

Distance between r0 (0) and x+ (7) is also 1
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Vulnerable Instructions

AFor a vulnerable instruction, each of its input nodes that is not known
can be a target node or/and a vulnerable node

AA fault will be injected into the vulnerable node so that it might reveal
iInformation about the target node

ATADA creates a subgraph for each pair of target and vulnerable node




Find Vulnerable Instruction

. Instruction

0O N O o B W N P

LD rO X+

LD rl X+ (6)
LD r2 keyl+

LD r3 keyl+

AND rO r1

EOR rO r2
EOR r1r3
ST x+10

ST x+rl Recall that r2 (2) and r3 (3) are the key nodes
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Update Known Nodes

ciphertext node
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One More lteration
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Evaluation Results
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