
Fully Automated Differential Fault
Analysis on Software
Implementations of Block Ciphers

Xiaolu Hou1, Jakub Breier2, Fuyuan Zhang3, and Yang Liu2

1 National University of Singapore, Singapore
2 HP-NTU Digital Manufacturing Corporate Lab, Singapore
3 Max Planck Institute, Karlsruhe, Germany

CHES’19, 28 Aug 2019

Data Flow Graph of Software Implementation of AES

2

Our Contribution

3

• We developed a method that works on assembly implementations of
block ciphers, it identifies spots vulnerable to differential fault
analysis (DFA) by bit flips, and verifies whether those spots are
exploitable

• Our method is sound – if it marks the spot as exploitable, it is
provably exploitable

–The prototype tool outputs the identified attack

• Furthermore, we developed a way to check how many rounds should
be protected by a countermeasure to be able to avoid DFA to
vulnerable spots

Tool for Automated DFA on
Assembly

4

Tool for Automated DFA on Assembly – TADA

5

Analyze
assembly

file

Generate
custom

DFG

Construct
DFA

attack

Find the
key

• The main idea – feed the assembly code to the tool and get the
vulnerabilities, together with a way how to exploit them

• Static analysis module analyzes the propagation of the fault and
determines what information can be extracted from known data

• SMT solver module solves the DFA equations, verifying whether
an attack exists

TADA – Detailed Process Flow

6

Sample Cipher and DFG Construction

7

Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1

Properties of the DFG – Explained

8

Linear edge

Non-linear edge

Node r3 (3) affects node r1 (6)

Distance between r0 (0) and r0 (4) is 1

1

0

0

Distance between r0 (0) and x+ (7) is also 1

TADA – Detailed Process Flow

9

Vulnerable Instructions

10

• For a vulnerable instruction, each of its input nodes that is not known
can be a target node or/and a vulnerable node

• A fault will be injected into the vulnerable node so that it might reveal
information about the target node

• TADA creates a subgraph for each pair of target and vulnerable node

Find Vulnerable Instruction

11

Instruction

0 LD r0 X+

1 LD r1 X+

2 LD r2 key1+

3 LD r3 key1+

4 AND r0 r1

5 EOR r0 r2

6 EOR r1 r3

7 ST x+ r0

8 ST x+ r1 Recall that r2 (2) and r3 (3) are the key nodes

TADA – Detailed Process Flow

12

TADA – Detailed Process Flow

13

Update Known Nodes

14

TADA – Detailed Process Flow

15

Not yet!

One More Iteration

16

TADA – Detailed Process Flow

17

Evaluation Results

18

[TBM14] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential fault analysis on the

families of Simon and Speck ciphers. FDTC 2014.

[Gir05] Christophe Giraud. DFA on AES. Conference on AES 2005.

Countermeasures

How many rounds to protect?

Standard Duplication/Triplication Countermeasure

20

• Popular in industrial applications

• Either area or time redundancy

• Expensive overheads

• Resources can be saved in case it is
not necessary to protect the entire
cipher

Encrypt Encrypt

Plaintext

Ciphertext Ciphertext

Compare

Countermeasure implementation based on TADA

21

• After the previous analysis, the target and the vulnerable nodes
change to target and exploitable nodes – the latter one was proven
to be exploitable by TADA

• We are now trying to find the earliest node possible to affect the
target node, such that there are no collisions

• This information will tell us what is the earliest round where the fault
can be injected

Results – AES

22

R8 R8 R8 R9 R9 R9

R10 R10 R10

SB SB

SB

SR SR

SR

MC MC

MC

D. Saha, D. Mukhopadhyay, and D.

RoyChowdhury. A Diagonal Fault Attack on the

Advanced Encryption Standard, Cryptology ePrint

Archive: Report 2009/581.

How Many Rounds to Protect?

23

Resources for countermeasures can be saved as follows:

– SIMON – over 90% (3 out of 32 rounds)

– SPECK – over 81% (4 out of 22 rounds)

– AES – over 60% (4 out of 10 rounds)

– PRIDE – over 80% (4 out of 20 rounds)

Conclusion

24

Conclusion

25

• We showed a way to automate differential fault analysis on block
cipher implementations

• Analysis works on a modified data flow graph, vulnerabilities are
checked with SMT solver for exploitability

• Countermeasure implementations can be done more efficiently with
the support of automated evaluation – number of rounds can be
reduced

• For future, it would be good to extend the method to other fault
models and other fault analysis techniques

Thank you for your interest!
Questions?

26

J. Breier, X. Hou, S. Bhasin (eds.): Automated
Methods in Cryptographic Fault Analysis,
Springer, 2019.

