TECHNOLOGICAL
UNIVERSITY

SINGAPORE

SoRORd NANYANG

Fully Automated Differential Fault
Analysis on Software
Implementations of Block Ciphers

Xiaolu Hou?, Jakub Breier?, Fuyuan Zhang?, and Yang Liu?
1 National University of Singapore, Singapore

2 HP-NTU Digital Manufacturing Corporate Lab, Singapore
3 Max Planck Institute, Karlsruhe, Germany

CHESO619, 28



Data Flow Graph of Software Implementation of AES

1s1 (1170) 1s1 (1170)

r0 (1073) [::arry (1;70:] (,u (1170)]

eor brbe (1171) \eor brbc

eor brbec (1171) 1s1 (L1

eor_brbc (1099)

. | - = : § : N -
- rlg (Ll—ﬂ:)j rlsg (L;44)j‘// key6+ (118€)
I . = = — 4___5:_-—'—__;—

(1200) 1d (11

-—
[L’J_:? ('_105)] (IlE (L20Z2)
T >7<//

NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

c: =

== Er=roE e
T i e e o ) e o o o ) e ]




Our Contribution

AWe developed a method that works on assembly implementations of
block ciphers, it identifies spots vulnerable to differential fault
analysis (DFA) by bit flips, and verifies whether those spots are
exploitable

AOur method is sound 7 if it marks the spot as exploitable, it is
provably exploitable

i The prototype tool outputs the identified attack
AFurthermore, we developed a way to check how many rounds should

be protected by a countermeasure to be able to avoid DFA to
vulnerable spots




Tool for Automated DFA on
Assembly




Tool for Automated DFA on Assembly T TADA

AThe main idea i feed the assembly code to the tool and get the
vulnerabilities, together with a way how to exploit them

A Static analysis module analyzes the propagation of the fault and
determines what information can be extracted from known data

A SMT solver module solves the DFA equations, verifying whether
an attack exists




TADA1

Detailled Process Flow

inputs
number of
round keys (m)

assembly code

create customized
data flow graph

calculate/update go to
known nodes , next‘
Instruction

N

// .
~ found
no P .
-« < vulnerable >
~

“~_instruction?

// s
<(Yulnerable instruction -
~_exploitable?

\Efp o

-

- is \\

= >

output

the attack details

v

< > calculate/update
e | known nodes
create an;.lyzz pA
DFA equations update _ \“\\
DFG ) /,/ recovered \\\
< lastmround -
formulate \\\\ keys?
SMT constraints N
Y e

call
73 SMT solver

finish (success)

FEFET NANYANG

TECHNOLOGICAL
UNIVERSITY

SINGAPORE

7



Sample Cipher and DFG Construction

LD rO X+
LD rl X+
LD r2 keyl+
LD r3 keyl+
AND rOrl
EOR rO r2
EOR 1 r3
ST x+ 10
ST x+rl

0 N OO o1 b WO N+ O

ciphertext node

FIFET NANYANG
| TECHNOLOGICAL 1]
i%"—“i UNIVERSITY

SSSSSSSSS



Properties of the DFG T Explained

ciphertext node

Linear edge

Non-linear edge

Node r3 (3) affects node rl (6)

Distance between rO (0) and r0 (4) is 1

Distance between r0 (0) and x+ (7) is also 1

Lcsed] NANYANG
< | TECHNOLOGICAL
i/ - UNIVERSITY

SSSSSSSSS




TADA1

Detailled Process Flow

inputs
number of
round keys (m)

N

create customized

assembly code

data flow graph A
pr 18 g
no . o
Q:'ulnerable instruction -
- 0 /’
calculate/update go;f - exploitable?
known nodes - hext U
Instruction
yes
N output

-

1/ -
~ found
/// .
<« vulnerable >
< . >
~_instruction?
. —
0

-

yes

the attack details

v

calculate/update
known nodes

analyze
DFA equations updated _a \“\\
DFG ) /,/ recovered -
< last m round
formulate \\\\ keys?
SMT constraints N
v e

call
73 SMT solver

-

>

>

finish (success)

§ NANYANG

TECHNOLOGICAL

==/ UNIVERSITY

SINGAPORE

7



Vulnerable Instructions

AFor a vulnerable instruction, each of its input nodes that is not known
can be a target node or/and a vulnerable node

AA fault will be injected into the vulnerable node so that it might reveal
iInformation about the target node

ATADA creates a subgraph for each pair of target and vulnerable node




Find Vulnerable Instruction

. Instruction

0O N O o B W N P

LD rO X+

LD rl X+ (6)
LD r2 keyl+

LD r3 keyl+

AND rO r1

EOR rO r2
EOR r1r3
ST x+10

ST x+rl Recall that r2 (2) and r3 (3) are the key nodes

Lcsed] NANYANG
TECHNOLOGICAL
UNIVERSITY

SSSSSSSSS

7



TADA1

Detailled Process Flow

inputs
number of
round keys (m)

N

create customized
data flow graph

assembly code

no
calculate/update go to
known nodes , next‘
Instruction

i
// i
_~~ found

no - ~
-« < vulnerable >
< . >
~_instruction?
- p

/

-

~

create analyze
DFA equations updated
DFG

v

formulate
SMT constraints

Y

call
73 SMT solver

T
—~vulnerabl

e : s
P is .

-

\‘\\
e instruction -

~ exploitable?
exp T

= >

output
the attack details

v

calculate/update
known nodes

i
/’/ -
" recovered -

< last m round
o keys?

A

yes

-

>

>

finish (success)

§ NANYANG

TECHNOLOGICAL

==/ UNIVERSITY

SINGAPORE

7



TADA1

Detailled Process Flow

inputs
number of
round keys (m)

N

create customized
data flow graph

assembly code

calculate/update go to
known nodes , next‘
Instruction

i
// .
_~~ found

no P .
-« < vulnerable >
< . >
~_instruction?
- p

/

~

-

ves
analyze
updated

create
DFA equations

// s
<(Yulnerable instruction -

- is N
. . >
M\gxplmtableff >
~

output
the attack details

v

calculate/update
known nodes

o .y

DFG ) _af ‘recovered \“\\
¢ < lastmround -
formulate \\\\ keys? ////
SMT constraints .
Y -

call
73 SMT solver

finish (success)

§ NANYANG

TECHNOLOGICAL

==/ UNIVERSITY

SINGAPORE

7



Update Known Nodes

ciphertext node

L %] NANYANG

TECHNOLOGICAL /
3 UNIVERSITY

SINGAPORE



TADA1

Detailled Process Flow

inputs
number of
round keys (m)

N

create customized
data flow graph

assembly code

no
calculate/update go to
known nodes , next‘
Instruction

i
// i
_~~ found

no P .
-« < vulnerable >
< . >
~_instruction?
- p

/

~
yes
create analyze

DFA equations updated

¢ DFG

formulate
SMT constraints

Y

call
73 SMT solver

// s
<(Yulnerable instruction -

- is N
~. o /’
M\gxplmtableff >
~

output
the attack details

v

calculate/update
known nodes

- >

// B

" recovered -

last m round >>
keys?

finish (success)

Not yet!

3 NANYANG
e
/"Y SINGAPORE

7



One More lteration

Lcsed] NANYANG
< | TECHNOLOGICAL /
LY - UNIVERSITY
SSSSSSSSS




TADA1

Detailled Process Flow

inputs
number of
round keys (m)

N

create customized
data flow graph

assembly code

no
calculate/update go to
known nodes , next‘
Instruction

i
// .
_~~ found

no P .
-« < vulnerable >
< . >
~_instruction?
- p

// s
<(Yulnerable instruction -

o is D

-

~ exploitable?
exp T
g >

output
the attack details

v

> calculate/update
e 1 known nodes
create analyze 4
DFA equations updated //’/ \“\\
DFG ) _ recovered
¢ < lastmround -

formulate
SMT constraints

Y

call
73 SMT solver

= keys? /// g

finish (success)

FEFET NANYANG

TECHNOLOGICAL
UNIVERSITY

SINGAPORE

7



Evaluation Results

[TBM14] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential fault analysis on the
families of Simon and Speck ciphers. FDTC 2014.
[Gir05] Christophe Giraud. DFA on AES. Conference on AES 2005.

E¥T NANYANG

TECHNOLOGICAL

UNIVERSITY
SSSSSSSSS




