Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

2019.08.28

Bo-Yeon Sim ${ }^{1, \dagger}$, Jihoon Kwon ${ }^{2}$, Kyu Young Choi ${ }^{2}$, Jihoon Cho 2, Aesun Park ${ }^{3, \dagger}$, and Dong-Guk Han ${ }^{1,3, \dagger}$
${ }^{1}$ Department of Mathematics, Kookmin University, Seoul, South Korea
${ }^{2}$ Security Research Team, Samsung SDS, Inc., Seoul, South Korea
${ }^{3}$ Department of Financial Information Security, Kookmin University, Seoul, South Korea
${ }^{\dagger}$ SICADA(Side Channel Analysis Design Academy) Laboratory

\square PKC (Public Key Cryptosystem)

[^0]
\square PKC (Public Key Cryptosystem)

[^1]
\square PKC (Public Key Cryptosystem)

[^2]\square PKC (Public Key Cryptosystem)
Dec 20, 2016
Formal Call for Proposals

\square PKC (Public Key Cryptosystem)

\square QC (Quasi-Cyclic) Code

* Circulant matrix
$>$ The top row (or the leftmost column) of a circulant matrix is the generator of the circulant matrix

* Quasi-Cyclic Matrix

\square QC (Quasi-Cyclic) Code
* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

\square QC (Quasi-Cyclic) Code
* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{1}$	0	0	1
1	0	1	0	0
0	1	0	1	0
0	0	1	0	1
$\mathbf{1}$	0	0	1	0

H_{0}

c_{0}^{\top}
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{1}$	0	0	1
1	0	1	0	0
0	1	0	1	0
0	0	1	0	1
$\mathbf{1}$	0	0	1	0

H_{0}

c_{0}^{\top}
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

H_{0}

c_{0}^{\top}

$\left(c_{0} \lll 1\right)^{\top} \quad\left(c_{0} \lll 4\right)^{\top}$

Calculated by
Constant-Time Multiplication
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code
* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

H_{0}

\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code
* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}$

$$
d=(11101010)_{2}
$$

$$
2^{7}=128 \text {-bit } \rightarrow \text { 16-byte }
$$

unrotated

 rotated$\left(c_{0} \lll d\right)^{\top}$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}$

$$
d=\left(\underset{\uparrow d_{7}}{(11101010)_{2}}\right.
$$

$$
2^{7}=128 \text {-bit } \rightarrow \text { 16-byte }
$$

> unrotated rotated $\quad d_{7}=1$
\& $0 x 00 \cdots 00$
\& $0 x f f \cdots f f$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}$

$$
d=(11101010)_{2}
$$

$$
2^{6}=64 \text {-bit } \rightarrow 8 \text {-byte }
$$

$\left(c_{0} \lll d\right)^{\top}$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$$
d=(11101010)_{2}
$$

unrotated rotated	$d_{7}=1$	
unrotated		
rotated	$d_{6}=1$	
unrotated		$\& 0 x 00 \cdots 00$
rotated	$d_{5}=1$	$\& 0 x f f \cdots f f$

$\left(c_{0} \lll d\right)^{\top}$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$$
d=(11101010)_{2}
$$

unrotated rotated $\quad d_{7}=1$
unrotated
rotated
unrotated
rotated unrotated rotated

$$
2^{4}=16 \text {-bit } \rightarrow 2 \text {-byte }
$$

$\left(c_{0} \lll d\right)^{\top}$

\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$$
\begin{gathered}
d=(11101010)_{2} \\
\uparrow d_{3}
\end{gathered}
$$

$\left(c_{0} \lll d\right)^{\top}$

unrotated rotated $\quad d_{7}=1$
unrotated
rotated
$d_{6}=1$
unrotated
rotated
unrotated
$d_{5}=1$
rotated
unrotated rotated
\& $0 x 00 \cdots 00$
\& $0 x f f \cdots f f$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top} \quad d=(11101010)_{2}$
$0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=2-$ bit

$\left(c_{0} \lll d\right)^{\top}$
\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code
* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top} \quad d=(11101010)_{2}$
$0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=2-$ bit

$\left(c_{0} \lll d\right)^{\top}$

\square

\square Side-Channel Attacks on QC Code-Based Cryptography

\square Motivations and Contributions

Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information \downarrow

Is there no method allows to recover accurate secret indices using only side-channel information?

\square Motivations and Contributions

Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information \downarrow

Is there no method allows to recover accurate secret indices using only side-channel information?

Enhanced Multiple-Trace Attack which can recover accurate secret indices using only side-channel information

\square Motivations and Contributions

Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

\square Motivations and Contributions

\square Motivations and Contributions

\square Contributions

Enhanced Multiple-Trace Attack on QC Code-Based Cryptography Using Constant-Time Multiplication

Novel Single-Trace Attack on QC Code-Based Cryptography Using Masked Constant-Time Multiplication

\square Constant-Time Multiplication for QC (Quasi-Cyclic) Code

* Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\top}$

$$
d=(11101010)_{2}
$$

multiples of $8<8$-bit $\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}$

$\left(c_{0} \lll d\right)^{\top}$

\square Multiple-Trace Attack on Constant-Time Multiplication

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}
$$

Correlation Correlation

Occurring
Position Analysis

Word unit rotation

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\text { result }=\left\{\begin{array}{lllll}
(\text { rotated \& 0x00) } & \oplus & (\text { unrotated \& } 0 x f f) & =\text { unrotated } & , \text { if } d_{i}=0 \\
(\text { rotated \& 0xff }) & \oplus & (\text { unrotated \& } 0 x 00) & =\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

Bit rotation	result $=\left(\left\langle<_{8-L}\right) \mid(>\rangle_{L}\right)$
	$0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8$

\square Experiment
$d=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, d_{i} \in\{0,1\}$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

Property 1.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
R \in_{\text {Random }}\{\mathbf{0}, \mathbf{1}\}^{8}
$$

16-byte rotate <<

Unrotated value is chosen

$$
d=(01101010)_{2}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

Property 1.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
R \in_{\text {Random }}\{\mathbf{0}, \mathbf{1}\}^{8}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
R \in_{\text {Random }}\{\mathbf{0}, \mathbf{1}\}^{8}
$$

Property 1.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

16-byte rotate <

Rotated value is chosen

$$
d=(11101010)_{2}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

Property 1.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
R \in_{\text {Random }}\{\mathbf{0}, \mathbf{1}\}^{8}
$$

Property 2.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

8-byte rotate <<

Rotated value is chosen

$$
\begin{gathered}
d_{i} \\
\boldsymbol{d}=(\mathbf{1 1 1 0 1 0 1 0})_{2}
\end{gathered}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

Property 2.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

\square Multiple-Trace Attack on the Word Unit Rotation

Property 2.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
R \in_{\text {Random }}\{\mathbf{0}, 1\}^{8}
$$

4-byte rotate <<

2-byte rotate <<

		R		
R				

Unrotated value is chosen

$$
\begin{gathered}
d_{i} \\
\boldsymbol{d}=(\mathbf{1 1 1 0 1 0 1 0})_{2}
\end{gathered}
$$

\square Multiple-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

Property 2.

L L S

4-byte rotate <<

2-byte rotate <<

\square Multiple－Trace Attack on the Word Unit Rotation
＊Step 1．Find the most significant bit d_{7} based on Property 1
$\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}$

R is only loaded in the first operation

Power consumption related to R
does not occurs sequentially twice
in the first operation part ハーデン $\quad d_{7}=1$

\square Multiple-Trace Attack on the Word Unit Rotation

* Step 2. Find from \boldsymbol{d}_{6} to $\boldsymbol{d}_{\mathbf{3}}$ based on Property 2
$\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}$
power consumption related to R occurs sequentially twice in the \qquad iteration

\square Multiple-Trace Attack on the Bit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
\begin{aligned}
& \text { result }=(\lll(8-L)) \mid\left(\gg_{L}\right) \\
& 0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8
\end{aligned}
$$

\square Multiple-Trace Attack on the Bit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
\begin{aligned}
& \text { result }=(\lll(8-L)) \mid\left(\gg_{L}\right) \\
& 0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8
\end{aligned}
$$

$>$ Guess the L value from 0 to 7
and calculate Pearson's correlation coefficient between traces and result values

\square Multiple-Trace Attack on Constant-Time Multiplication

$$
\boldsymbol{d}=(\underbrace{\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}}
$$

We can accurately recover all secret indices regardless of word size and security level
(We described the experiment results on a 32-bit processor in Appendix B)

\square Multiple-Trace Attack on Constant-Time Multiplication

Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information

$\boldsymbol{\downarrow}$	8-bit	16 -bit	32 -bit	64 -bit
80-bit security	0.4 seconds	15 seconds	16 hours	$\approx \mathbf{5 3 0}$ years
128 -bit security	2 seconds	4 minutes	≈ 7 days	$\approx \mathbf{7 9 0 , 0 0 0}$ years

It is not feasible on 64-bit processor
Enhanced Multiple-Trace Attack which can accurately recover secret indices regardless of word size and security level
\square Single-Trace Attack on Constant-Time Multiplication

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}
$$

Key	Simple
Bit-dependent	Power
Attack	Analysis

Word unit rotation

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\text { result }=\left\{\begin{array}{lllll}
(\text { rotated \& } 0 x 00) & \oplus & (\text { unrotated \& } 0 x f f) & =\text { unrotated } & , \text { if } d_{i}=0 \\
(\text { rotated } \& 0 x f f) & \oplus & (\text { unrotated } \& 0 x 00) & =\text { rotated } & \text { if } d_{i}=1
\end{array}\right.
$$

Bit rotation	result $=\left(\ll_{8-L}\right) \mid\left(\gg_{L}\right)$
$0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8$	

\square Single-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

Property 3.

$$
\text { result }=\left\{\begin{array}{cl}
\text { unrotated } & , \text { if } d_{i}=0 \\
\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

$$
\text { result }=\left\{\begin{array}{lllll}
(\text { rotated } \& 0 x 00) & \oplus & (\text { unrotated } \& 0 x f f) & =\text { unrotated }, & , \text { if } d_{i}=0 \\
(\text { rotated } \& 0 x f f) & \oplus & (\text { unrotated } \& 0 x 00) & =\text { rotated } & , \text { if } d_{i}=1
\end{array}\right.
$$

\square Single-Trace Attack on the Word Unit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$d=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, d_{i} \in\{0,1\}: 675 \sim 695$ points

$$
\text { result }=\left\{\begin{array}{lllll}
(\text { rotated \& } 0 x 00) & \oplus & (\text { unrotated \& } 0 x f f) & =\text { unrotated } & \text { if } d_{i}=0 \\
(\text { rotated \& } 0 x f f) & \oplus & (\text { unrotated } \& 0 x 00) & =\text { rotated } & \text { if } d_{i}=1
\end{array}\right.
$$

mask \quad mask

Key Bit-dependent Property
\square Single-Trace Attack on the Word Unit Rotation
$\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} \boldsymbol{d}_{2} \boldsymbol{d}_{\mathbf{1}} \boldsymbol{d}_{\mathbf{0}}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}$

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
169=(10101001)_{2}
$$

$$
201=(11001001)_{2}
$$

$$
233=(11101001)_{2}
$$

$$
\begin{aligned}
& \checkmark W=8 \\
& \quad \text { mask }= \begin{cases}0 \times 00 & , \text { if } d_{i}=0 \\
0 x f f & , \text { if } d_{i}=1\end{cases}
\end{aligned}
$$

- K-means clustering
- Fuzzy k-means clustering
- EM (Expectation-maximization)
\square Single-Trace Attack on the Bit Rotation

$$
\boldsymbol{d}=\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}, \boldsymbol{d}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}
$$

$$
\begin{aligned}
& \text { result }=\left(\ll_{8-L}\right) \mid\left(>_{L}\right) \\
& 0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8
\end{aligned}
$$

	Bit rotate	Left shift	Right shift	SPA
AVR				
8-bit word	Single bit shift instructions	$(8-L)$ times $((8-L)$ clock cycles $)$	L times $(L$ clock cycles $)$	O
MSP				
16-bit word	Single bit shift instructions	$(8-L)$ times $((8-L)$ clock cycles $)$	$(L$ clock cycles $)$	O

\square Single-Trace Attack on the Bit Rotation

$$
\begin{aligned}
& \text { result }=\left(\left\langle<_{8-L}\right) \mid\left(\gg_{L}\right)\right. \\
& 0 \leq L=\left(d_{2} d_{1} d_{0}\right)_{2}<8
\end{aligned}
$$

	Bit rotate	Left shift	Right shift	SPA
8-bit word	Single bit shift instructions	(8-L) times ((8-L) clock cycles)	L times (L clock cycles)	O
16-bit word	Single bit shift instructions	$(8-L)$ times $((8-L)$ clock cycles $)$	L times (L clock cycles)	O
32-bit word	Multiple bit shift instructions (ex. barrel shifter)	One clock	One clock	X
64-bit word	Multiple bit shift instructions (ex. barrel shifter)	One clock	One clock	X

\checkmark In the cases of 32-bit and 64-bit, we need to solve linear equations to find accurate indices
\square Single-Trace Attack on Constant-Time Multiplication

$$
\boldsymbol{d}=\left(d_{\text {Key }}^{\left(d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}\right)_{2}}\right.
$$

We can accurately recover all secret indices if processor provides single bit shift instructions

Even if processor does not provide single bit shift instructions, we can extract substantial parts of secret indices
(We described the experiment results on a 32-bit processor in Section 5 and Appendix B)

\square Case Study: NIST Round 2 Code-Based Cryptography

Code BIKE
Classic McElice
RQC \quad HQC
LEDAcrypt
ROLLO
\square Case Study: NIST Round 2 Code-Based Cryptography

* BIKE
$>$ QC-MDPC
Table : Keys and syndromes of BIKE

	Public key		Private key
BIKE-1	$F=\left[F_{0} \mid F_{1}\right]$	$F_{0}=G \cdot H_{0}$ $F_{1}=G \cdot H_{1}$	
BIKE-2	$F=\left[F_{0} \mid F_{1}\right]$	$F_{0}=I_{r}$ $F_{1}=H_{1} \cdot H_{0}^{-1}$	H
BIKE-3	$F=\left[F_{0} \mid F_{1}\right]$	$F_{0}=G \cdot H_{0}+H_{1}$ $F_{1}=G$	$H c^{\top}$

$* I_{r}$ is an $r \times r$ identity matrix

* G is an $r \times r$ dense circulant matrix
* H_{i} is an $r \times r$ sparse circulant matrix, $H=\left[H_{0} \mid H_{1}\right]$
$* c$ is a received row vector, $c=\left[c_{0} \mid c_{1}\right]$
- LEDAcrypt
$>$ QC-LDPC
Table : Keys and syndromes of LEDAcrypt

	Public key	Private key	Syndrome
LEDAcrypt KEM	$P=\left[M \mid I_{r}\right]=L_{n_{0}-1}^{-1} L$		

* I_{r} is an $r \times r$ identity matrix
* Z is a diagonal block matrix with $n_{0}-1$ replicas of the block I_{r}
* M_{i} is an $r \times r$ dense circulant matrix, $0 \leq i<n_{0}-1, M=\left[M_{0}|\cdots| M_{n_{0}-2}\right]$
* Q is an $n \times n$ sparse circulant matrix composed of $n_{0} \times n_{0}$ sparse circulant blocks
* H_{i} is an $r \times r$ sparse circulant matrix, $0 \leq i \leq n_{0}-1, H=\left[H_{0}|\cdots| H_{n_{0}-1}\right]$
* L_{i} is an $r \times r$ sparse circulant matrix, $0 \leq i \leq n_{0}-1, L=H Q$
$* \quad$ is a received row vector, $c=\left[c_{0}|\cdots| c_{n-1}\right]$
\square Conclusion

Enhanced Multiple-Trace Attack on QC Code-Based Cryptography Using Constant-Time Multiplication

Novel Single-Trace Attack on QC Code-Based Cryptography Using Masked Constant-Time Multiplication

[^0]: Factoring and Discrete Logarithms

[^1]: Factoring and Discrete Logarithms

[^2]: [1] Peter Williston Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring", SFCS 1994, pp. 124-134, 1994

