

Conference on Cryptographic Hardware and Embedded Systems 2019

Atlanta, USA, August 25–28, 2019

Novel Side-Channel Attacks on Quasi-Cyclic Code-Based Cryptography

2019.08.28

Bo-Yeon Sim^{1,†}, Jihoon Kwon², Kyu Young Choi², Jihoon Cho², Aesun Park ^{3,†}, and Dong-Guk Han^{1,3,†}

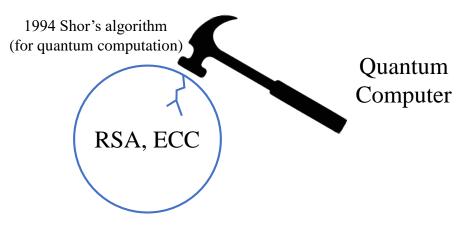
- ¹ Department of Mathematics, Kookmin University, Seoul, South Korea
 - ² Security Research Team, Samsung SDS, Inc., Seoul, South Korea
- ³ Department of Financial Information Security, Kookmin University, Seoul, South Korea
 - † SICADA(Side Channel Analysis Design Academy) Laboratory

1. Related works

■ PKC (Public Key Cryptosystem)

Factoring and Discrete Logarithms

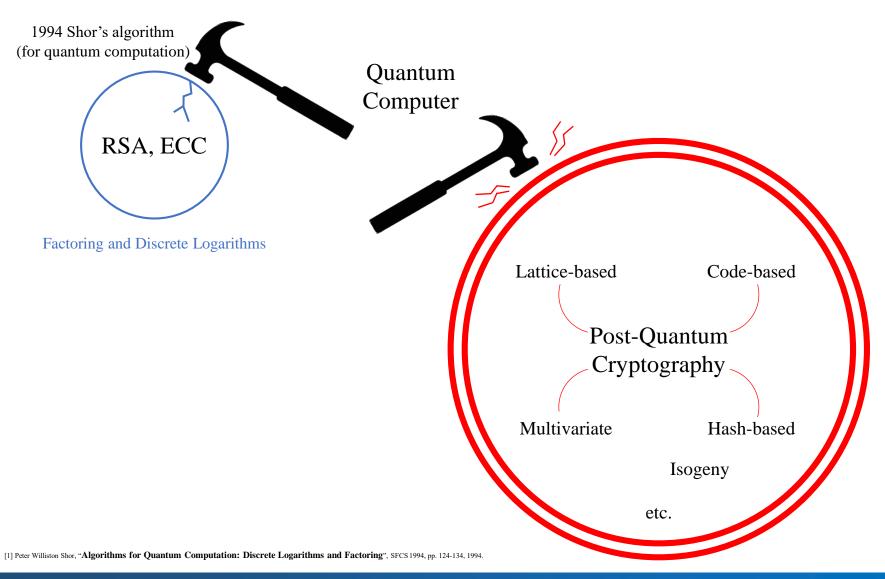
PKC (Public Key Cryptosystem)



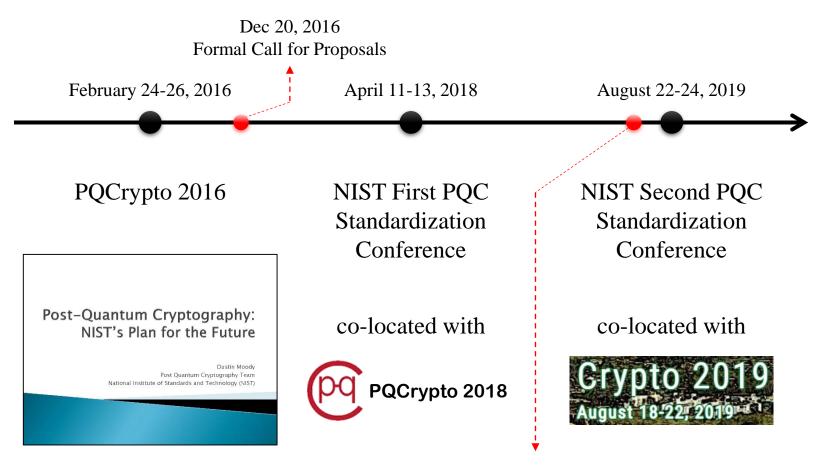
Factoring and Discrete Logarithms

1. Related works

■ PKC (Public Key Cryptosystem)

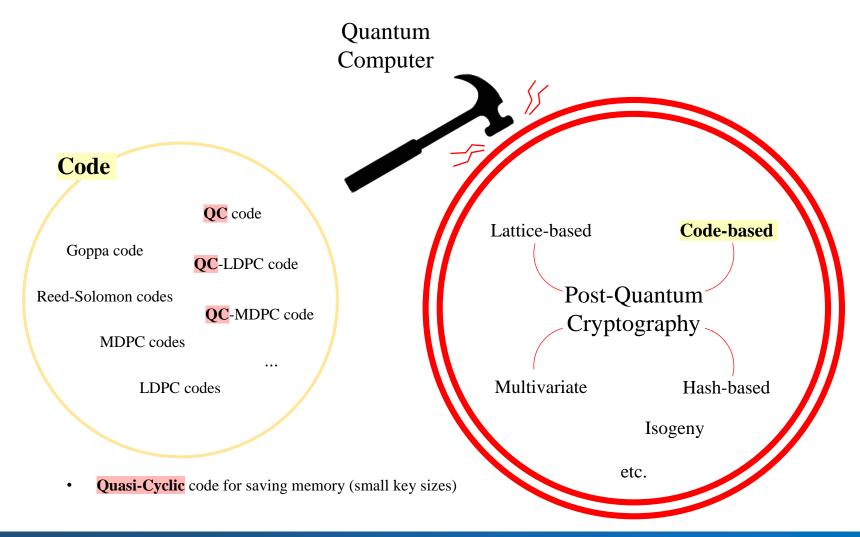


■ PKC (Public Key Cryptosystem)



January 30, 2019
Second Round Candidates announced
(26 algorithms)

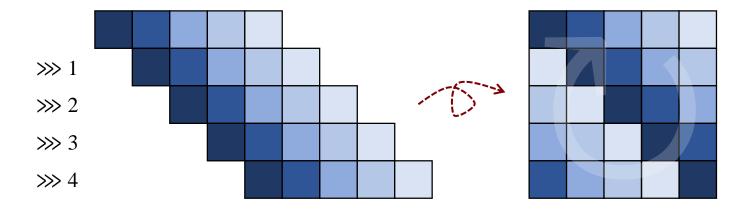
PKC (Public Key Cryptosystem)



QC (Quasi-Cyclic) Code

Circulant matrix

The top row (or the leftmost column) of a circulant matrix is the generator of the circulant matrix

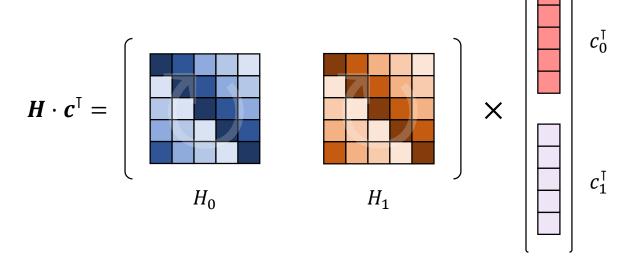


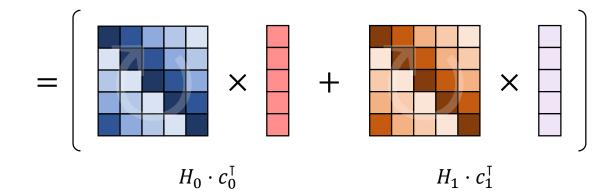
Quasi-Cyclic Matrix



QC (Quasi-Cyclic) Code

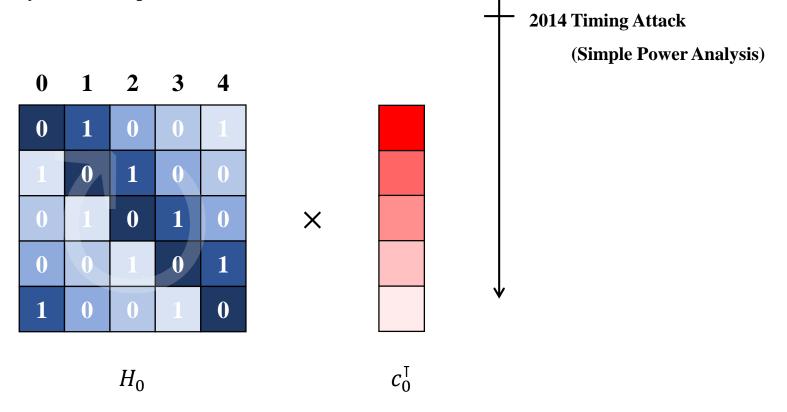
Syndrome computation $H \cdot c^{\mathsf{T}}$



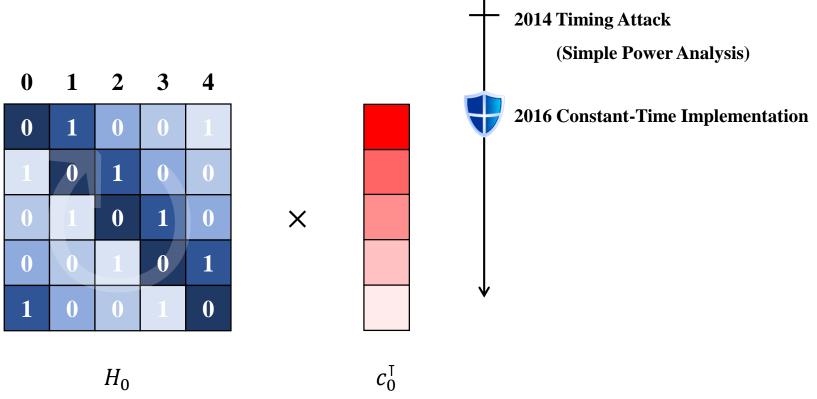


QC (Quasi-Cyclic) Code

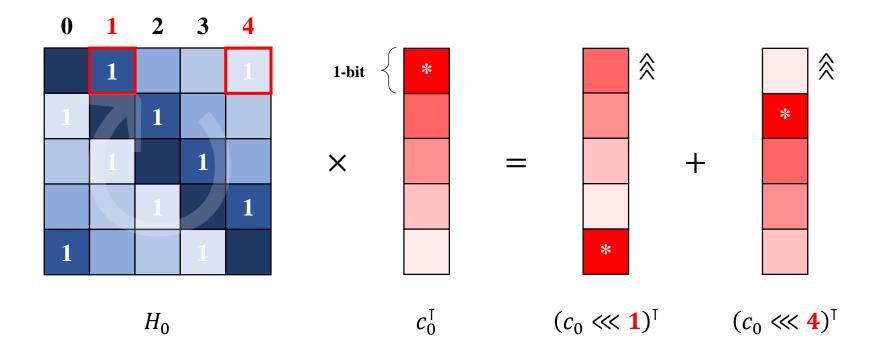
Syndrome computation $H \cdot c^{\mathsf{T}}$



Syndrome computation $H \cdot c^{\mathsf{T}}$



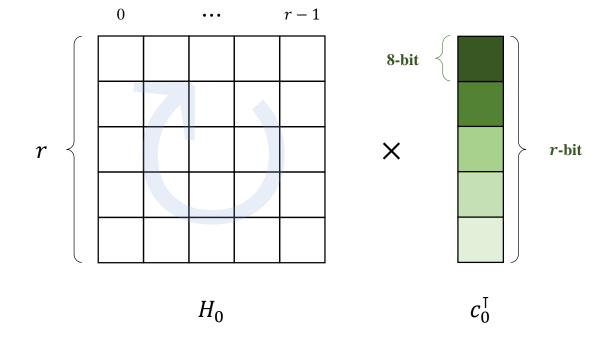
Syndrome computation $H \cdot c^{\mathsf{T}}$



Calculated by
Constant-Time Multiplication

Syndrome computation $H \cdot c^{\mathsf{T}}$

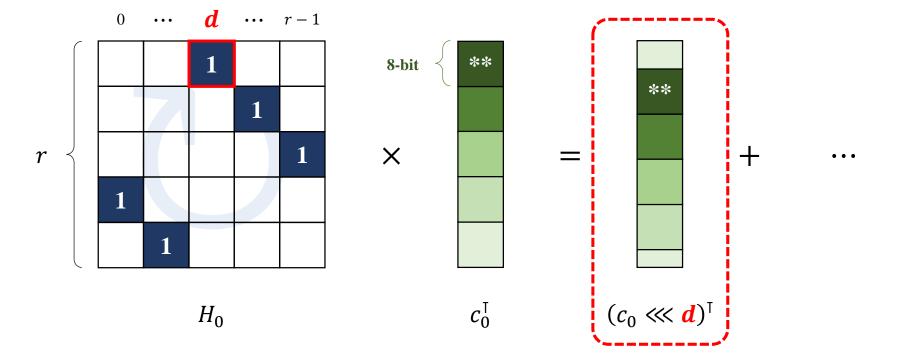
8-bit word



Syndrome computation $H \cdot c^{\mathsf{T}}$

1. Related works

8-bit word



 $** \in \{0,1\}^8$

13

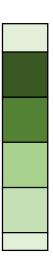
Syndrome computation $H \cdot c^{\mathsf{T}}$

$$d = (11101010)_2$$

$$\uparrow d_7$$

 $2^7 = 128$ -bit $\rightarrow 16$ -byte

8-bit word



	R		
16-byte rotate <<			R

unrotated rotated

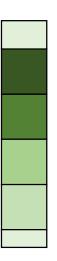
 $(c_0 \ll \mathbf{d})^{\mathsf{T}}$

Syndrome computation $H \cdot c^{\mathsf{T}}$

$$d = (11101010)_2$$

$$\uparrow d_7$$

$$2^7 = 128$$
-bit $\rightarrow 16$ -byte



	R		
16-byte rotate <<			R

unrotated

 $\& 0x00 \cdots 00$

8-bit word

rotated $d_7 = 1$ & $0xff \cdots ff$

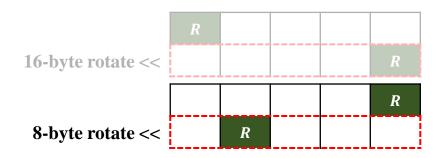
 $(c_0 \ll \mathbf{d})^{\mathsf{T}}$

Syndrome computation $H \cdot c^{\mathsf{T}}$

$$d = (11101010)_2$$
 $\uparrow d_6$

$$2^6 = 64$$
-bit \rightarrow 8-byte

8-bit word



unrotated

rotated $d_7 = 1$

unrotated

rotated

 $d_6 = 1$ & $0xff \cdots ff$

 $\& 0x00 \cdots 00$

 $(c_0 \ll \mathbf{d})^{\mathsf{T}}$

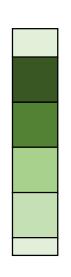
Syndrome computation $H \cdot c^{\mathsf{T}}$

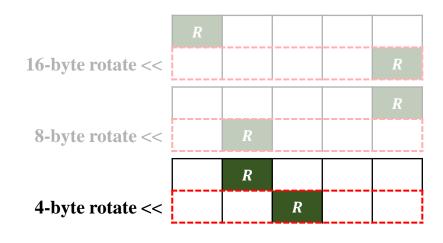
$$d = (11101010)_2$$

$$\uparrow d_5$$

$$2^5 = 32$$
-bit \rightarrow 4-byte

8-bit word





unrotated $d_7 = 1$ unrotated $d_6 = 1$

unrotated & $0x00 \cdots 00$

rotated $d_5 = 1$ & $0xff \cdots ff$

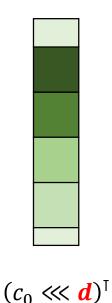
$$(c_0 \ll \mathbf{d})^{\mathsf{T}}$$

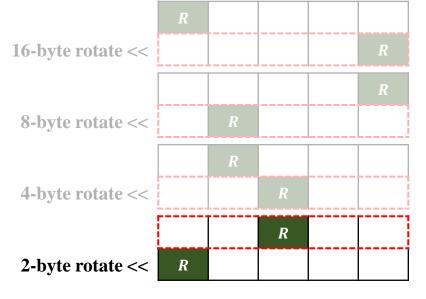
$$d = (11101010)_2$$

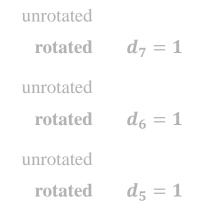
$$\uparrow d_4$$

$$2^4 = 16$$
-bit \rightarrow 2-byte

8-bit word



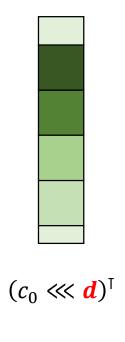


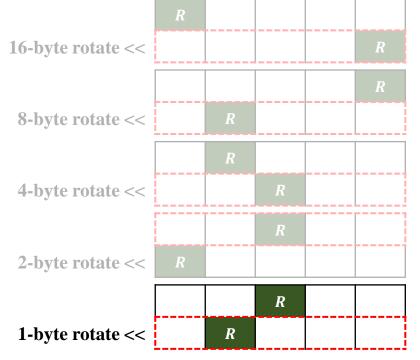


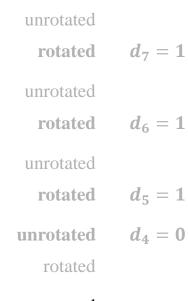
$$d = (11101010)_2$$
 $\uparrow d_3$

$$2^3 = 8$$
-bit \rightarrow 1-byte

8-bit word







unrotated $\& 0x00 \cdots 00$

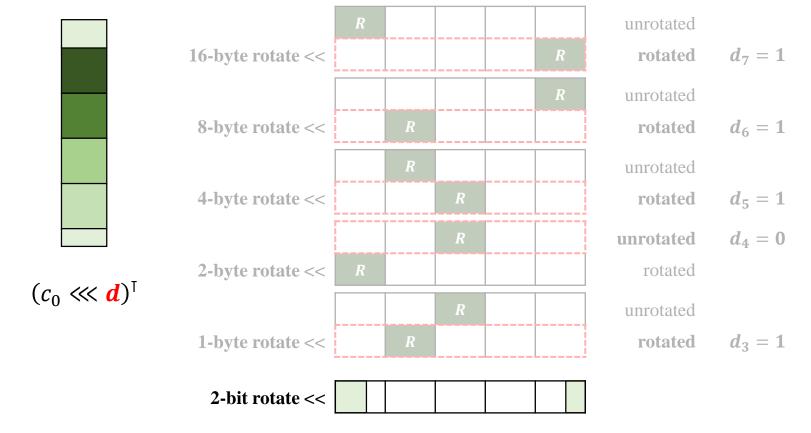
 $d_3 = 1$ & $0xff \cdots ff$ rotated

Syndrome computation $H \cdot c^{\mathsf{T}}$

$$d = (11101010)_2$$

 $(d_2d_1d_0)_2 < 8$ -bit

$$0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 2$$
-bit



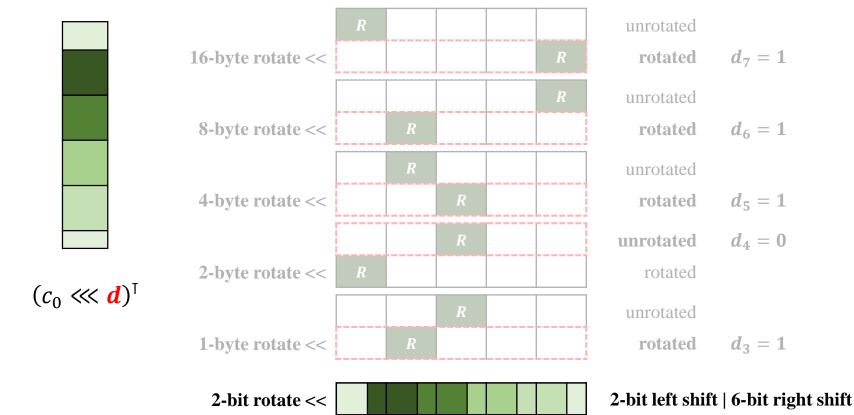
8-bit word

Syndrome computation $H \cdot c^{\mathsf{T}}$

$$d = (11101010)_2$$

 $(d_2d_1d_0)_2 < 8$ -bit

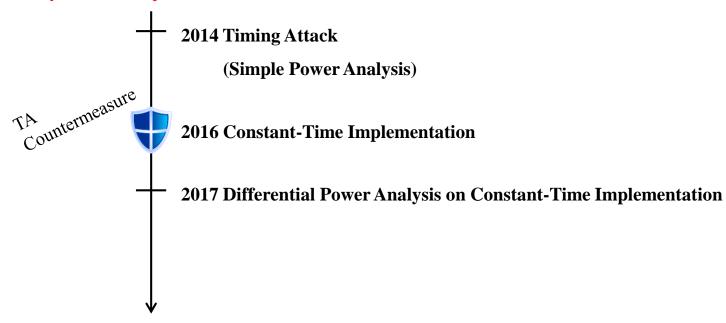
$$0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 2$$
-bit



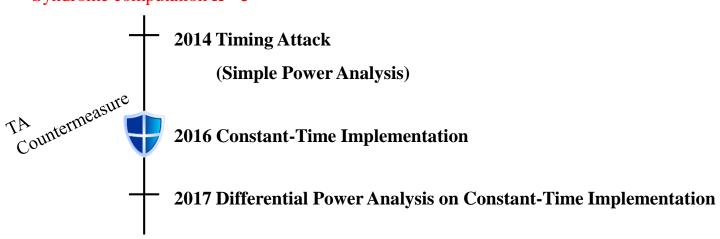
8-bit word

Side-Channel Attacks on QC Code-Based Cryptography

Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\mathsf{T}}$



Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\mathsf{T}}$

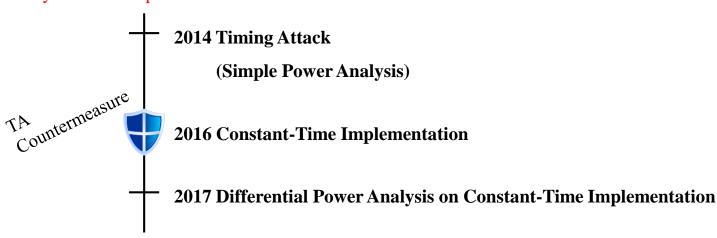


Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information

Is there no method allows to recover accurate secret indices using only side-channel information?

Syndrome computation $\boldsymbol{H} \cdot \boldsymbol{c}^{\mathsf{T}}$

1. Related works

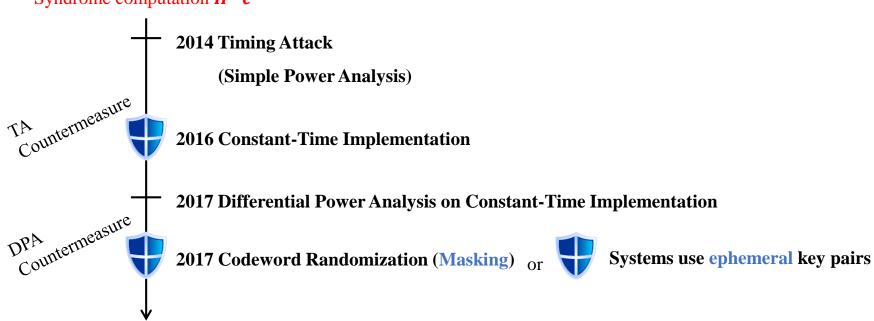


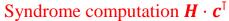
Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information

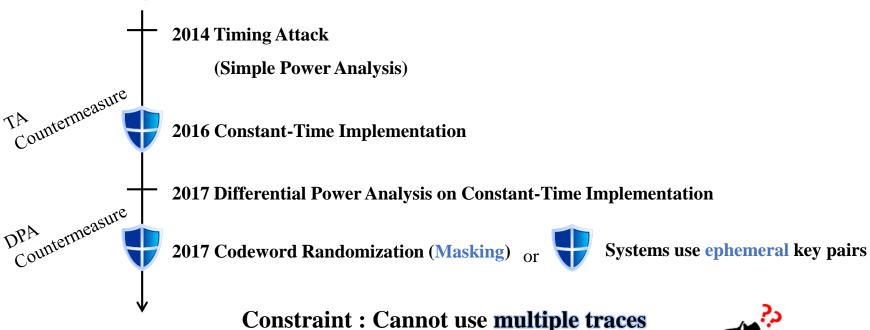
Is there no method allows to recover accurate secret indices using only side-channel information?

Enhanced Multiple-Trace Attack which can recover accurate secret indices using only side-channel information

Syndrome computation $\mathbf{H} \cdot \mathbf{c}^{\mathsf{T}}$

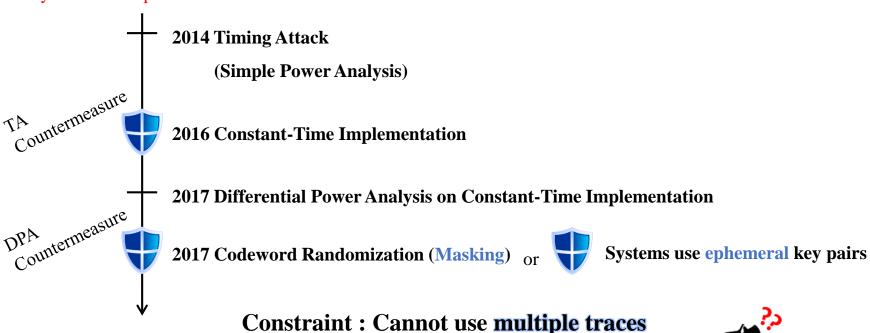






Is it impossible to attack using only a single trace?

Syndrome computation $\mathbf{H} \cdot \mathbf{c}^{\mathsf{T}}$



Is it impossible to attack using only a single trace?

Novel Single-Trace Attack on QC Code-Based Cryptography
Using Masked Constant-Time Multiplication

Contributions

1. Related works

Enhanced Multiple-Trace Attack on QC Code-Based Cryptography Using Constant-Time Multiplication

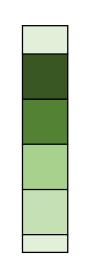
Novel Single-Trace Attack on QC Code-Based Cryptography Using Masked Constant-Time Multiplication



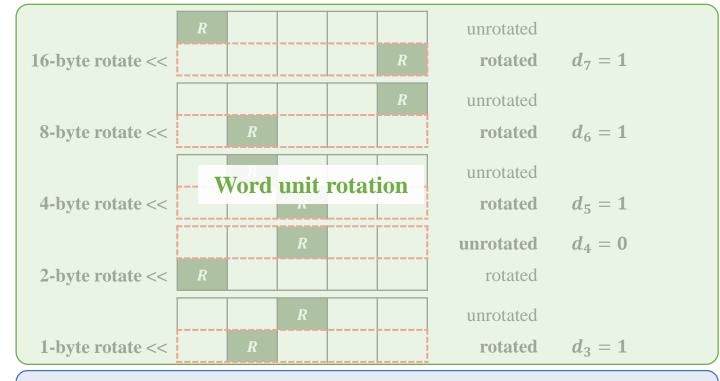
$$d = (11101010)_2$$

multiples of 8 < 8-bit

8-bit word



 $(c_0 \ll \mathbf{d})^{\mathsf{T}}$



2-bit rotate << Bit rotation

2-bit left shift | 6-bit right shift

Multiple-Trace Attack on Constant-Time Multiplication

8-bit word

$$d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2$$

Correlation Correlation Occurring Power Position Analysis

Word unit rotation

$$result = \begin{cases} unrotated & \text{, if } d_i = 0 \\ rotated & \text{, if } d_i = 1 \end{cases}$$

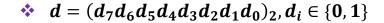
$$result = \begin{cases} (rotated \& 0x00) & \oplus & (unrotated \& 0xff) = unrotated & , if d_i = 0 \\ (rotated \& 0xff) & \oplus & (unrotated \& 0x00) = rotated & , if d_i = 1 \end{cases}$$

Bit rotation

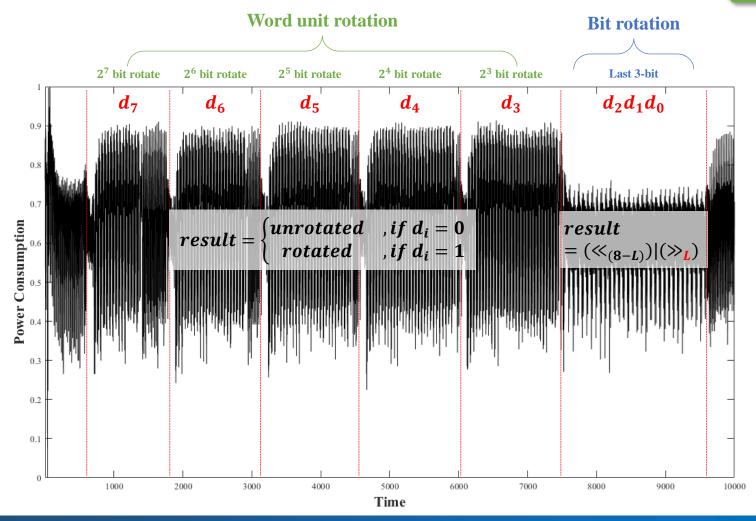
$$result = (\ll_{8-L})|(\gg_L)$$

$$0 \le L = (d_2 d_1 d_0)_2 < 8$$

Experiment



8-bit word



■ Multiple-Trace Attack on the Word Unit Rotation

$$d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2, d_i \in \{0, 1\}$$

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$

8-bit word

■ Multiple-Trace Attack on the Word Unit Rotation

Property 1.

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$



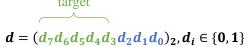
16-byte rotate <<

R		
		R

Unrotated value is chosen

$$d = (01101010)_2$$

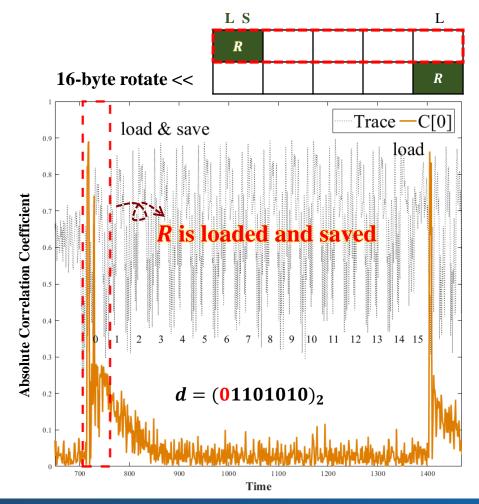
Multiple-Trace Attack on the Word Unit Rotation



 $R \in_{Random} \{0,1\}^8$

8-bit word

Property 1. $result = \begin{cases} unrotated & if d_i = 0 \\ rotated & if d_i = 1 \end{cases}$



Multiple-Trace Attack on the Word Unit Rotation

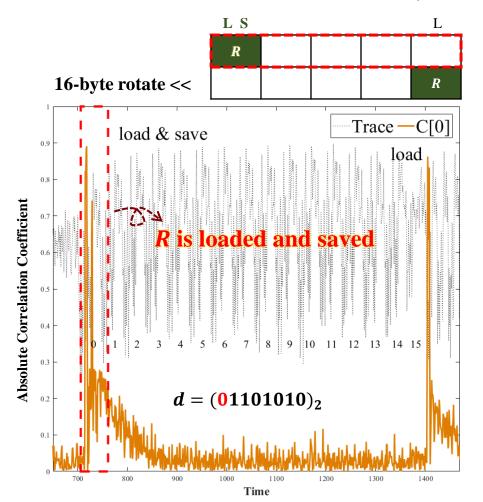
target $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

 $R \in_{Random} \{0,1\}^8$

8-bit word

Property 1.

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$



16-byte rotate << R

Rotated value is chosen

 $d = (11101010)_2$

Multiple-Trace Attack on the Word Unit Rotation

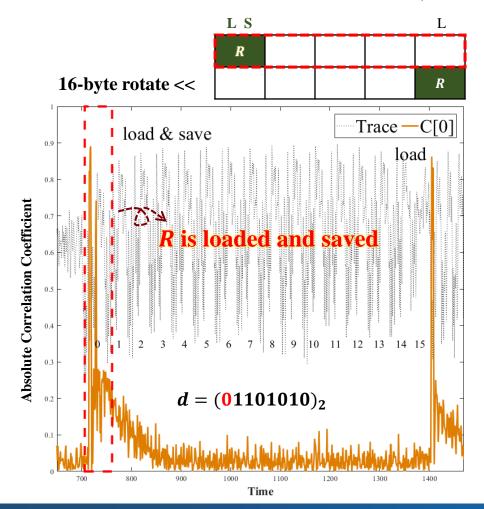
 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

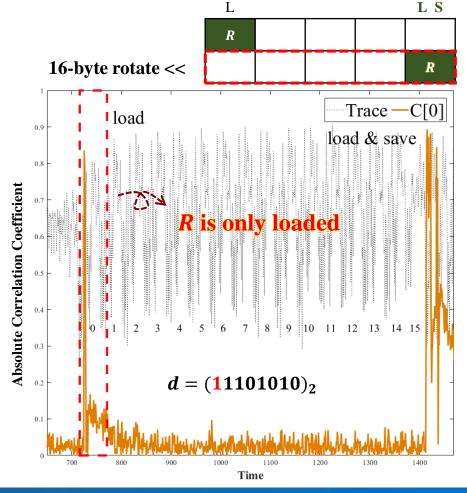
 $R \in_{Random} \{0,1\}^8$

8-bit word

Property 1.

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$





L S

Multiple-Trace Attack on the Word Unit Rotation

 $R \in_{Random} \{0,1\}^8$

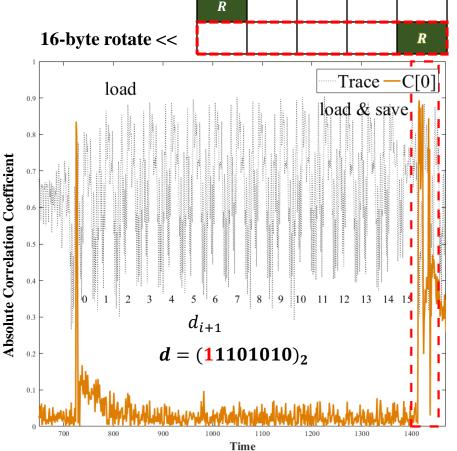
8-bit word

Property 2.

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$



L



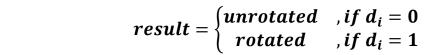
Rotated value is chosen

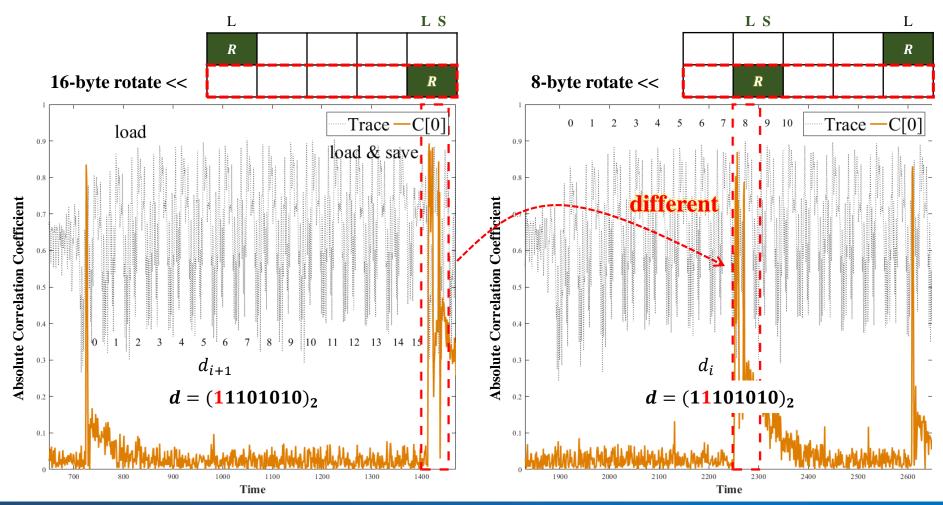
$$d_i$$
 $d = (11101010)_2$

 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

 $R \in_{Random} \{0,1\}^8$

8-bit word





Property 2.

 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

 $R \in_{Random} \{0,1\}^8$

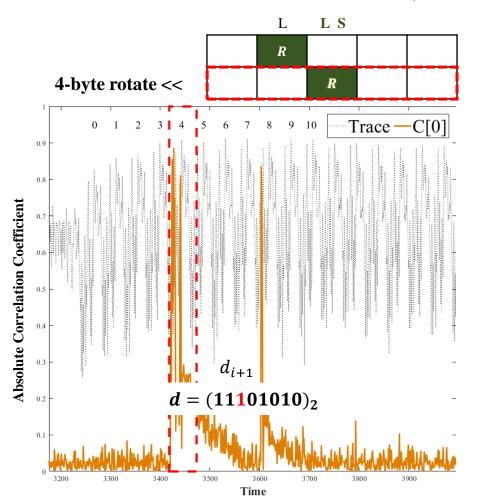
8-bit word

Property 2.

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$

, if
$$d_i = 0$$

, if $d_i = 1$



Unrotated value is chosen

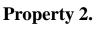
$$d_i$$
 $d = (11101010)_2$

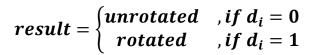
 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

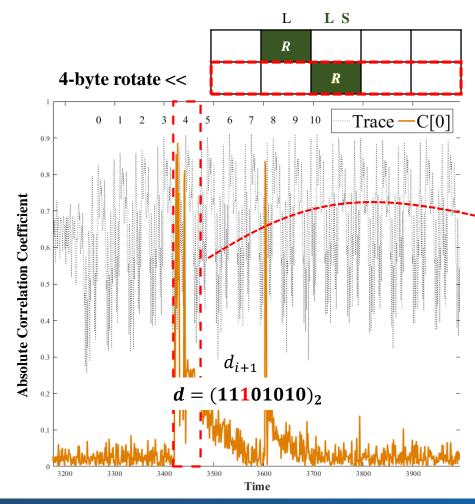
L S

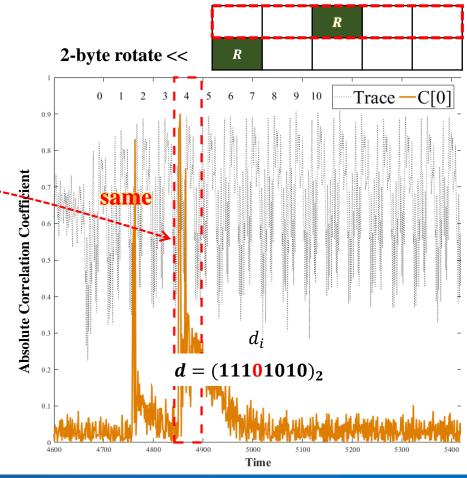
 $R \in_{Random} \{0,1\}^8$

8-bit word









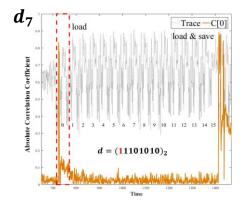
L

 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

 $R \in_{Random} \{0,1\}^8$

8-bit word

Step 1. Find the most significant bit d_7 based on Property 1

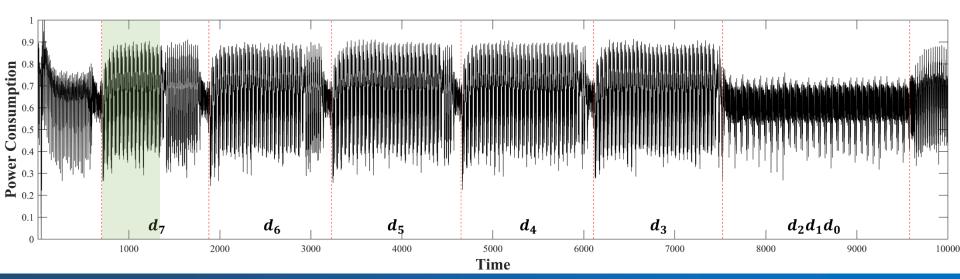


R is only loaded in the first operation

Power consumption related to R

does not occurs sequentially twice

in the first operation part



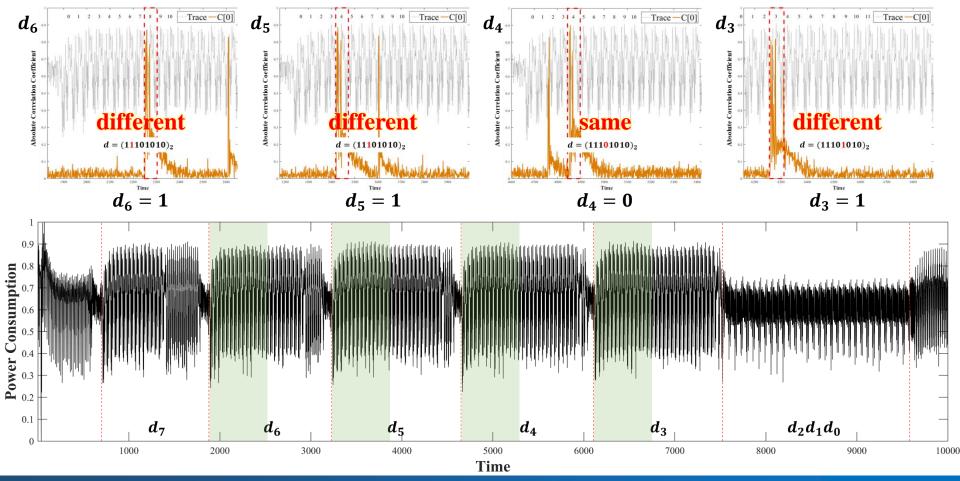
 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

 $R \in_{Random} \{0,1\}^8$

Step 2. Find from d_6 to d_3 based on Property 2

8-bit word

power consumption related to *R* occurs sequentially twice in the ____ iteration



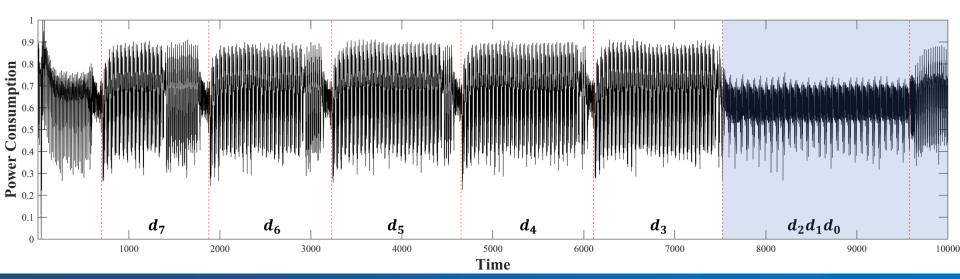
8-bit word

Multiple-Trace Attack on the Bit Rotation

$$d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$$

$$result = (\ll_{(8-L)})|(\gg_{\textcolor{red}{L}})$$

$$0 \le L = (d_2 d_1 d_0)_2 < 8$$



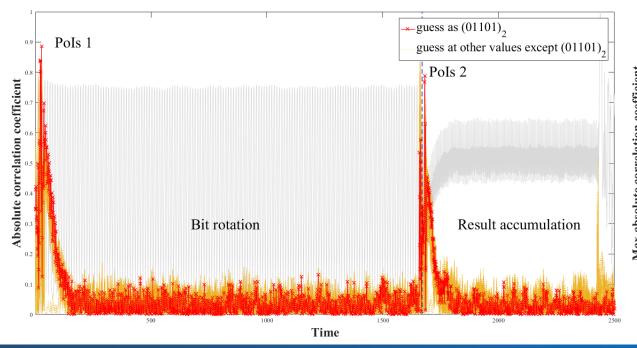
$$d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2, d_i \in \{0, 1\}$$

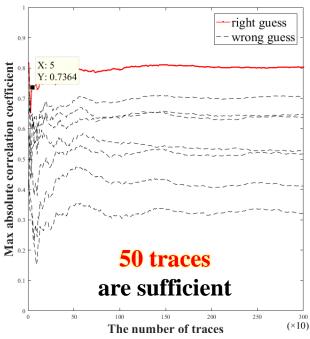
$$result = (\ll_{(8-L)})|(\gg_{\textcolor{red}{L}})$$

$$0 \le L = (d_2 d_1 d_0)_2 < 8$$

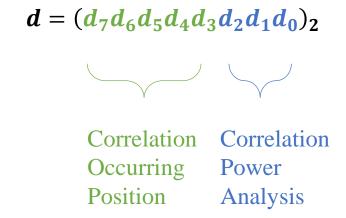
8-bit word

Guess the L value from 0 to 7 and calculate Pearson's correlation coefficient between traces and result values





■ Multiple-Trace Attack on Constant-Time Multiplication

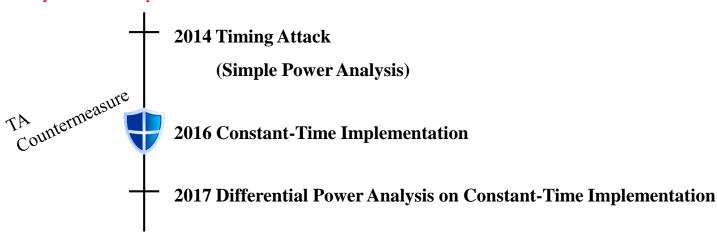


We can accurately recover all secret indices regardless of word size and security level

(We described the experiment results on a 32-bit processor in Appendix B)

Multiple-Trace Attack on Constant-Time Multiplication

Syndrome computation $\mathbf{H} \cdot \mathbf{c}^{\mathsf{T}}$



Limitation: It could not completely recover accurate secret indices, requiring further solving linear equations to obtain entire secret information

	8-bit	16-bit	32-bit	64-bit
80-bit security	0.4 seconds	15 seconds	16 hours	≈ 530 years
128-bit security	2 seconds	4 minutes	≈ 7 days	≈ 790,000 years

It is not feasible on 64-bit processor

In this paper Enhanced Multiple-Trace Attack which can accurately recover secret indices regardless of word size and security level

8-bit word

■ Single-Trace Attack on Constant-Time Multiplication

$$mask = \begin{cases} 0x00 & , if d_i = 0 \\ 0xff & , if d_i = 1 \end{cases}$$

 $d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2$

Key Simple
Bit-dependent Power
Attack Analysis

Word unit rotation

$$result = egin{cases} unrotated & \textit{, if } d_i = 0 \\ rotated & \textit{, if } d_i = 1 \end{cases}$$

$$result = \begin{cases} (rotated \& 0x00) & \oplus & (unrotated \& 0xff) = unrotated & , if d_i = 0 \\ (rotated \& 0xff) & \oplus & (unrotated \& 0x00) = rotated & , if d_i = 1 \end{cases}$$

Bit rotation

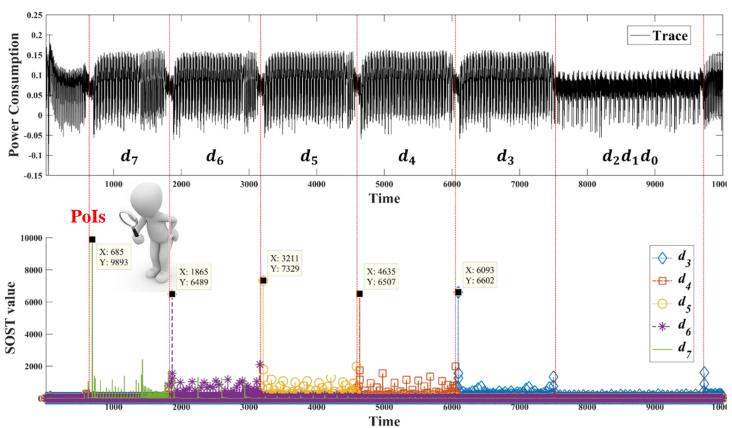
$$result = (\ll_{8-L})|(\gg_L)$$

$$0 \le L = (d_2 d_1 d_0)_2 < 8$$

 $d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2, d_i \in \{0, 1\}$

$$result = \begin{cases} unrotated & \text{, if } d_i = 0 \\ rotated & \text{, if } d_i = 1 \end{cases}$$

$$result = \begin{cases} (rotated \& 0x00) & \oplus & (unrotated \& 0xff) = unrotated & , if d_i = 0 \\ (rotated \& 0xff) & \oplus & (unrotated \& 0x00) = rotated & , if d_i = 1 \end{cases}$$



 $\neg mask$

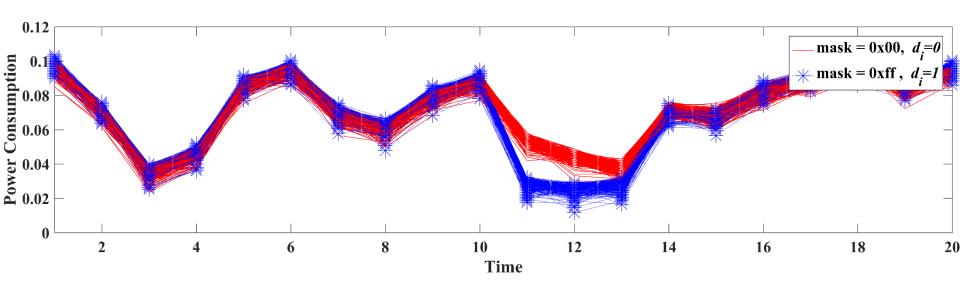
Single-Trace Attack on the Word Unit Rotation

mask

$$d = (d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0)_2, d_i \in \{0, 1\}$$

$$d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}: 675 \sim 695 \text{ points}$$

$$result = \begin{cases} (rotated \& 0x00) & \oplus & (unrotated \& 0xff) = unrotated & , if d_i = 0 \\ (rotated \& 0xff) & \oplus & (unrotated \& 0x00) = rotated & , if d_i = 1 \end{cases}$$



Key Bit-dependent Property

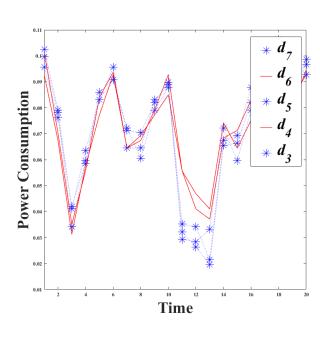
 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

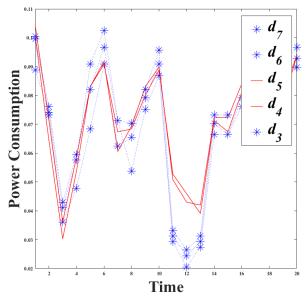
$$d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$$

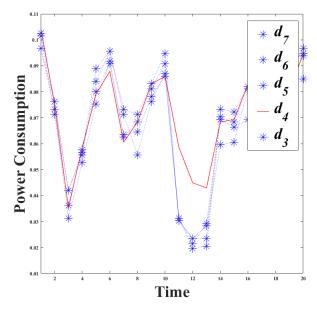
$$169 = (10101001)_2$$

$$201 = (11001001)_2$$

$$233 = (11101001)_2$$







$$W = 8$$

$$mask = \begin{cases} 0x00 & \text{if } d_i = 0 \\ 0xff & \text{if } d_i = 1 \end{cases}$$

- K-means clustering
- Fuzzy k-means clustering
- EM (Expectation-maximization)

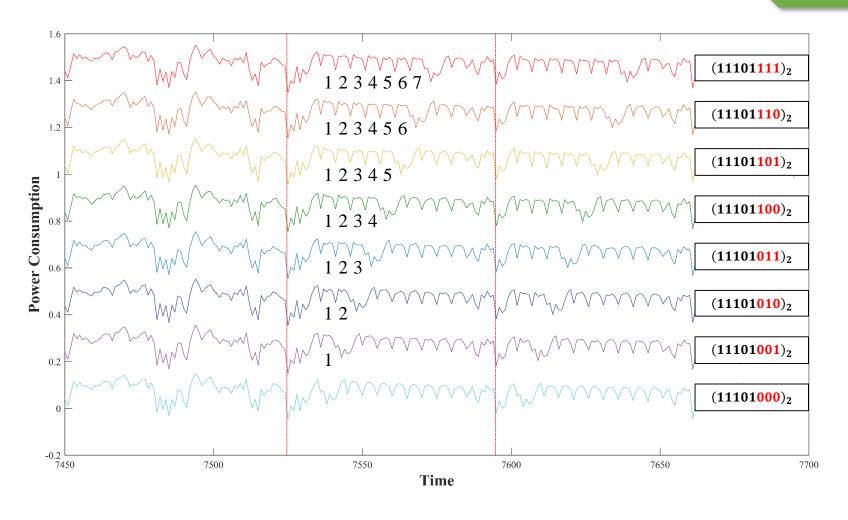
Single-Trace Attack on the Bit Rotation

$$result = (\ll_{8-L})|(\gg_{\underline{L}})$$

$$0 \le L = (d_2 d_1 d_0)_2 < 8$$

	Bit rotate	Left shift	Right shift	SPA
8-bit word	Single bit shift instructions	(8-L) times $((8-L)$ clock cycles)	L times (L clock cycles)	О
MSP 16-bit word	Single bit shift instructions	(8-L) times $((8-L)$ clock cycles)	L times (L clock cycles)	О

■ Single-Trace Attack on the Bit Rotation



Single-Trace Attack on the Bit Rotation

 $d = (d_7d_6d_5d_4d_3d_2d_1d_0)_2, d_i \in \{0, 1\}$

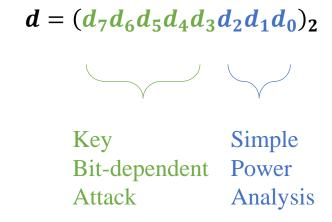
result =
$$(\ll_{8-L})|(\gg_L)$$

 $0 \le L = (d_2d_1d_0)_2 < 8$

		Bit rotate	Left shift	Right shift	SPA
 _ _	8-bit word	Single bit shift instructions	(8-L) times $((8-L)$ clock cycles)	L times (L clock cycles)	О
<u>ب</u> ر ا	16-bit word	Single bit shift instructions	(8-L) times $((8-L)$ clock cycles)	L times (L clock cycles)	О
<u>ار</u> ا	32-bit word	Multiple bit shift instructions (ex. barrel shifter)	One clock	One clock	X
	64-bit word	Multiple bit shift instructions (ex. barrel shifter)	One clock	One clock	X

In the cases of 32-bit and 64-bit, we need to solve linear equations to find accurate indices

Single-Trace Attack on Constant-Time Multiplication

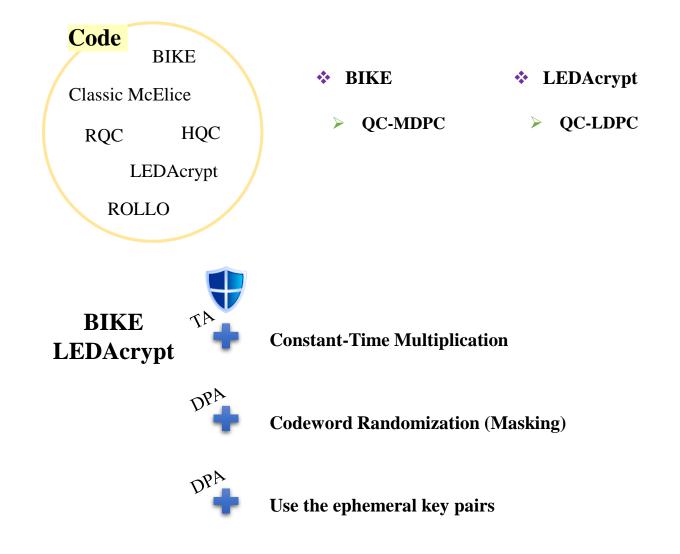


We can accurately recover all secret indices if processor provides single bit shift instructions

Even if processor does not provide single bit shift instructions, we can extract substantial parts of secret indices

(We described the experiment results on a 32-bit processor in Section 5 and Appendix B)

Case Study: NIST Round 2 Code-Based Cryptography



Case Study: NIST Round 2 Code-Based Cryptography

BIKE

Table: Keys and syndromes of BIKE

OC-MDPC

	Public key		Private key	Syndrome
BIKE-1	$F = [F_0 \mid F_1]$	$F_0 = G \cdot H_0$ $F_1 = G \cdot H_1$		Hc^\intercal
BIKE-2	$F = [F_0 \mid F_1]$	$F_0 = I_r$ $F_1 = H_1 \cdot H_0^{-1}$	Н	H_0c^\intercal
BIKE-3	$F = [F_0 \mid F_1]$	$F_0 = G \cdot H_0 + H_1$ $F_1 = G$		$c_0^{T} + H_0 c_1^{T}$

- * I_r is an $r \times r$ identity matrix
- * G is an $r \times r$ dense circulant matrix
- * H_i is an $r \times r$ sparse circulant matrix, $H = [H_0 \mid H_1]$
- * c is a received row vector, $c = [c_0 \mid c_1]$

LEDAcrypt

Table: Keys and syndromes of LEDAcrypt

QC-LDPC

	Public key	Private key	Syndrome
LEDAcrypt KEM	$P = [M \mid I_r] = L_{n_0 - 1}^{-1} L$	H,Q	$L_{n_0-1}c^\intercal$
LEDAcrypt PKC	$P = [Z \mid [M_0 \mid \dots \mid M_{n_0-2}]^{T}]$	11, 6	$(HQ)c^{\intercal}$

- * I_r is an $r \times r$ identity matrix
- * Z is a diagonal block matrix with $n_0 1$ replicas of the block I_r
- * M_i is an $r \times r$ dense circulant matrix, $0 \le i < n_0 1$, $M = [M_0 \mid \cdots \mid M_{n_0 2}]$
- * Q is an $n \times n$ sparse circulant matrix composed of $n_0 \times n_0$ sparse circulant blocks
- * H_i is an $r \times r$ sparse circulant matrix, $0 \le i \le n_0 1$, $H = [H_0 \mid \cdots \mid H_{n_0 1}]$
- * L_i is an $r \times r$ sparse circulant matrix, $0 \le i \le n_0 1$, L = HQ
- is a received row vector, $c = [c_0 \mid \cdots \mid c_{n-1}]$

Conclusion

Enhanced Multiple-Trace Attack on QC Code-Based Cryptography Using Constant-Time Multiplication

Novel Single-Trace Attack on QC Code-Based Cryptography Using Masked Constant-Time Multiplication

