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Passwords …

This Talk:

… In case that we are forced to accept that we can’t avoid them:

How could we at least make their use as secure as possible …

even when facing tight resource constraints.
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Passwords …

This Talk:

… In case that we are forced to accept that we can’t avoid them:

How could we at least make their use as secure as possible …

even when facing tight resource constraints.

System-level approach
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Many installations: critical infrastructure

Security should be mandatorily considered !
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Security for industrial control equipment

• Security: A rather new topic for industrial control

• First step for security: focus on machine-to-machine interfaces and protocols.

• HMI interfaces often considered in a second step only.

• E+H: Remote HMI service access mostly provides an even larger attack vector!

• Most widespread authentication mechanism for HMI interfaces 2019: Passwords

AuCPace: Efficient Verifier-Based PAKE protocol tailored for the IIoT
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Requirements derived when planning the E+H BlueConnect App Architecture

• In very important settings no PKI at the customer installation! 

=> HMI security solution shall not rely on PKI.

• Network access to central authentication servers is not always available

(Subnetworks “air-gapped” for security reasons / Devices integrated to legacy fieldbuses) => 

Support required for “offline” authentication with local storage of credentials

• Some devices have extremely tight resource constraints.

(Intrinsically safe explosion protection by power and energy limits, See [HL17])

• Devices might become physically accessible for the adversary. 

• We shall prepare the architecture for two-factor authentication, but need to accept that our 

customers will often stick to the concept of “passwords” for HMI authentication only.

AuCPace: Efficient Verifier-Based PAKE protocol tailored for the IIoT
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We are forced to work with passwords?

Lets then do our very best to protect our customer’s installations!

We need a combination of two elements:

• Verifier-based password authenticated key exchange (V-PAKE)

• State-of-the-art memory-hard password hashes

Astonishingly there is no established industry standard solution!
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• “Augmented Composable Password-Authenticated Connection Establishment” 

AuCPace

• “Composable Password-Authenticated Connection Establishment” 

CPace

• Constructions were designed for allowing freely usable implementations avoiding patents in order 

to make it suitable for more widespread use and, possibly, standardization.

• Motivation for this paper: Security proof will be pre-condition for more widespread use.

• This talk also considers preliminary results from the second review round carried out

in the context of the CFRG PAKE selection process.
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Outline of this talk

• AuCPace and CPace protocols and their security analysis

• Comparison with other V-PAKE nominations from current CFRG selection process

• Implementation strategy and results on ARM Cortex-M4 and Cortex-M0 

• Summary

AuCPace: Efficient Verifier-Based PAKE protocol tailored for the IIoT
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CHES2017: Typical budget constraints for Ex-ia field devices

• Ignition by hot surfaces  Limit peak supplied electrical power

• Ignition by Sparks  Limit size of energy buffers (e.g. capacitors)

Add-on feature “HMI interface and security” will be granted only a small fraction of 

the available power / transient buffer budget!

Making Password Authenticated Key Exchange Suitable For Resource Constrained Industrial Control Devices

Slide 13 Björn Haase, Benoît Labrique
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• Protocol level

• Allow for fast curves: X25519 Diffie-Hellman

• “x-coordinate-only” solution avoids need for point compression

• Secure quadratic twist of Curve25519: AuCPace simplified point verification

• No hash over full protocol transcripts required

• Refer the password hash to the powerful client

• Curve25519 group element operations

• Optimization of Elligator2 in comparison to [HL17] by using method from [BDL+11]

• Fe25519 field operations

• Optimized assembly-level code using register-allocating code-generator tool
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol

• Client side (e.g. tablet PC): 

Clear-text password (“pw”) available
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol

• Client side (e.g. tablet PC): 

Clear-text password (“pw”) available

Typically large memory, 

powerful computation capabilities.

(scrypt/Argon2)
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol

• Client side (e.g. tablet PC): 

Clear-text password (“pw”) available

• Server side (e.g. field device)

Password verifier (“W”)
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol

• Client side (e.g. tablet PC): 

Clear-text password (“pw”) available

• Server side (e.g. field device)

Password verifier (“W”)

Strongly constrained device
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AuCPace is a two-party verifier-based

Password-Authenticated Key Exchange

(PAKE) protocol

• Client side (e.g. tablet PC): 

Clear-text password (“pw”) available

• Server side (e.g. field device)

Password verifier (“W”)

V-PAKE: Knowledge of password verifier W does

not allow for taking over the client role.
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Three subcomponents within AuCPace

• AuCPace augmentation layer

• CPace balanced PAKE protocol

• Optional explicit mutual authentication
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1. Password verifiers W

2. Session establishment
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The password verifier W is calculated in two steps.
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The password verifier W is calculated in two steps.

• Memory hard password hash
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The password verifier W is calculated in two steps as a combination of a

• Memory hard password hash

AuCPace25519: 

scrypt, s = (r = 8, N = 32768, p = 1)



07/22/2019

AuCPace: Efficient Verifier-Based PAKE protocol tailored for the IIoT

AuCPace in a nutshell

B. Haase, B. LabriqueSlide 26

The password verifier W is calculated in two steps as a combination of a

• Memory hard password hash

• Fixed-Base-Point Diffie-Hellman group operation

AuCPace25519: 

X25519
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The password verifier W is calculated in two steps as a combination of a

• Memory hard password hash

• Fixed-Base-Point Diffie-Hellman group operation

AuCPace proofs explicitly consider 

non-prime-order groups with small co-factors
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Session key establishment:

Client has access to clear-text password “pw”

Server has access to verifier “W”
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Server generates DH key pair (x , X)

Ephemeral: “full augmentation” or static: “partial augmentation”
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Username and password hashing information is exchanged
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Password verifier lookup // Password hash calculation
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Client and server generate a shared DH-style 

secret PRS (Password-Related String)
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PRS is passed as parameter to the balanced

CPace protocol substep
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Three subcomponents within AuCPace
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Both sides calculate an ephemeral

generator G for DH

(as in PACE [BFK09])
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This also involves all relevant

associated data to authenticate

(“channel identifier” CI)
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AuCPace25519 uses Elligator2

and SHA512
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Diffie-Hellman step allows for

x-coordinate-only algorithms
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Design allows for simplified

point verification for groups

with a secure quadratic twist.
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Generated session keys match

iff both input parameters PRS and 

associated data “CI” match
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Optionally, session keys are 

explicitly authenticated
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Three subcomponents within AuCPace
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Note that no communication transcripts were necessary for 

generating the session keys and authentication messages!
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Three subcomponents within AuCPace

• AuCPace augmentation layer

• CPace balanced PAKE protocol

• Optional explicit mutual authentication
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Security analysis – 1 –

Proof that CPace protocol executions are

indistinguishable from an ideal functionality 

[CHK+05] for an observing environment

for all real-world adversaries

under the specified hardness assumptions
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Security analysis – 2 –

Replace CPace in AuCPace with
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Security analysis – 3 –

Proof that execution of AuCPace protocol

runs that use                   are indistinguishable 

from executions using the ideal functionality

[GMR06]
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Security analysis – 4 –

Conclusion: AuCPace is a secure

verifier-based PAKE protocol
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Security analysis – 4 –

Conclusion: AuCPace is a secure

verifier-based PAKE protocol optionally

allowing for explicit mutual authentication

of session keys
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AuCPace security assumptions:

• Computational Diffie-Hellman problem (CDH)

• Discrete log of S’ = Map2Point(s) unknown.

• Programmable random oracle

• Upon availability of an inverse map 

Map2Point-1  security also maintained with 

respect to adaptive adversaries.
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• UC[Can01] allows for an unlimited number of concurrently executed protocol 

instances        distinguished by a session ID (sid) (sid,ssid pair in JUC [CR03])

sid 1

sid 2

sid n

sid 1

sid 2

sid n

... ...

Party a Party b

Message:

sid ## data
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• Straight-forward approach for establishing sid in the real world:

nonce-round prior to the protocol.

• In the literature this complexity coming with any UC security proof is not always considered

to the same extend [JKX18,GMR06].
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• Proof technicality: sid needed for addressing purposes in the simulation environment

(the UC Turing machines don’t have something such as “concurrent TCP channels”)

sid 1

sid 2

sid n

sid 1

sid 2

sid n

... ...

Party a Party b

Message:

sid ## data
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• Proof technicality: sid needed for addressing purposes in the simulation environment

(Need for addressing => Technical need for establishment prior to the protocol run)

sid 1

sid 2

sid n

sid 1

sid 2

sid n

... ...

Party a Party b

Message:

sid ## data
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• Session IDs are sometimes also used for a session specific nonce value

(Here: No technical need for nonce agreement prior to entering the protocol)

sid 1

sid 2

sid n

sid 1

sid 2

sid n

... ...

Party a Party b

Message:

sid ## data
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• AuCPace uses sid as nonce

• sid prepended to hash inputs

=> outputs become ephemeral

=> different sid never share queries to 

Küsters, Tüngerthal and Rausch [KTR13]:

doing so is important for composability 

guarantees when combining joint state 

with global random oracles (IITM model).
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Following slides:

Comparison of AuCPace with the other augmented PAKE protocols that come with 

proven forward security.

• VTBPEKE: Pointcheval and Wang [PW17]

• OPAQUE: Jarecki, Krawczyk and Xu [JKX18]

Other related V-PAKE protocols:

• BSPAKE, SPAKE2+: (no security proof provided)
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Following slides:

Comparison of AuCPace with the other augmented PAKE protocols that come with 

proven forward security.

• VTBPEKE: Pointcheval and Wang [PW17]

• OPAQUE: Jarecki, Krawczyk and Xu [JKX18]

Other related V-PAKE protocols:

• BSPAKE, SPAKE2+: (no security proof provided)

Protocols nominated in the currently ongoing

PAKE selection process at CFRG
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AuCPace and OPAQUE provide stronger security guarantees than VTBPEKE 

by offering pre-computation attack resistance and universal composability.

In comparison to OPAQUE, AuCPace considers a more powerful adaptive 

adversary model.
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• Pre-computation attack resistance as introduced by Jarecki, Krawczyk and Xu [JKX18]

• The salt value for password hashing is kept secret from the adversary. 

• Offline attacks become possible only after stealing the password database.

• See Appendix C of the updated eprint paper version as prepared for 

CFRG PAKE selection process (https://eprint.iacr.org/2018/286.pdf)

• Cost of this additional security feature for AuCPace: 

+1 scalar multiplication for server, +2 scalar multiplications + 1 inversion for client.

https://eprint.iacr.org/2018/286.pdf
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OPAQUE and VTBPEKE are monolithic constructions and merge 

authentication and session key generation.

Require one message less than AuCPace.
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For OPAQUE the parallelism comes at the cost of significantly larger 

password verifiers, even when considering point compression.
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AuCPace needs particularly little 

computational resources on 

constrained servers in the partially

augmented configuration.

Main design target for our specific   

setting. [HL17]
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Unlike VTBPEKE both, AuCPace and OPAQUE don’t mandatorily 

require explicit mutual authentication.

In case that explicit mutual authentication is not required by the 

application, one communication round could be avoided.
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AuCPace: modular construction

Separation into an augmentation layer and balanced CPace.

Possible advantage for V-PAKE integration into transport layer

User account complexity of augmented PAKE could be better kept 

away from transport layer software components.
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Considerations regarding PAKE integration into TLS

CFRG PAKE selection process: Suggestion for augmented PAKE (V-PAKE)
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Client Server

TLS implements a tunneling mechanism for authentication message exchange

TLS implements UC-secure balanced PAKE CPace

UC-Secure “augmentation layer” establishes ephemeral PRS on both sides using tunneled information 

messages in the TLS handshake and post-handshake phases.

GUI client
(e.g. Web server)

TLS client
with CPace

V-PAKE authentication GUI handler
Implements AuCPace augmentation layer

Implements GUI masks for login
Arranges for account management (e.g. 

password changes)

TCP
/IP

TLS server
with CPace Gui server

V-PAKE server
(with user credentials database)

Implements AuCPace augmentation layer

TCP
/IP

P
RS

P
RS
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Client Server

Future extensions (e.g. “UC-Secure smart-card-based authentication”, “UC-Secure fingerprint-based” 

authentication, RADIUS-server based authentication) could use the same TLS-CPace APIs for future 

extensions without need of modification of the TLS stack core.

Different ways of calculating the PRS input to CPace will be possible.

TLS-CPace just manages session confidentiality, integrity, forward secrecy and authenticates PRS.

GUI client
(e.g. Web 
browser)

TLS client
with CPace

V-PAKE  + Smart-Card GUI handler 
PRS contains Smart-Card based 

authenticator in addition/as replacement to 
user password

TCP
/IP

TLS server
with CPace Web server

V-PAKE server
(with user credentials database)

Requests Smart-Card authentication in 
addition/as replacement to password. 

TCP
/IP

P
RS

P
RS
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Machine-Machine balanced Use-Case
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• Machine/Machine interfaces could use CPace without an augmentation layer based on 

a pre-shared secret “PRS” which may be of low entropy.

TLS client
with CPace

TCP
/IP

TLS server
with CPace

TCP
/IP

Low-entropy
secret

P
RS

Low-entropy
secret

P
RS
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AuCPace specifically designed 

for avoiding implementation 

pitfalls and for ease-of-

implementation
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• Standard (naive) implementation of Elligator2 [BHKL13] requires two separate field

exponentiations (one for the inverse and one for the Legendre symbol).

• Using the inverse square root algorithm of [BDL+11]: one single exponentiation.

• Improvement accounts for about 4% of speed/power improvement regarding the

balanced CPace protocol on a Cortex M0

• (Recall Riad Wahby‘s talk yesterday)
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• Schoolbook multiplication strategy

• Sequence of partial word products optimized for 

keeping input operands and partial results in

registers

• Important difference in comparison to previous speed

record Hayato Fujii and Diego Aranha [FA17]: 

Merging integer arithmetic with reduction

• A+B,  A-B,  A + 121666 B       as inline assembly
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• Schoolbook multiplication strategy

• Sequence of partial word products optimized for 

keeping input operands and partial results in

registers

• Important difference in comparison to previous speed

record [FA17]: 

Merging integer arithmetic with reduction

• A+B,  A-B,  A + 121666 B       as inline assembly

Assembly code created by use 

of automatic code generator 

handling register allocation. 

(correctness issue!)
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• Significant cycle-count improvement in comparison to previous speed record [FA17]
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• Speed of X25519 competitive even in comparison with solutions using endomorphisms.
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Speed results for X25519 and AuCPace
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• Speed of our X25519 competitive even in comparison with solutions using endomorphisms.

Update August 2019: New X25519 speed record by Emil Lenngren [LEN18]

Full X25519 in assembly using non-standard ABI function calls passing full 

fe25519 operands in registers. 

=> even fewer operand load/store operations
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RAM/ROM requirements for AuCPace
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Summary
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• If you cannot avoid using password for remote access authentication, we recommend: 

V-PAKE + memory hard password hashing

• Result of our system-level optimization strategy for constrained servers: 

AuCPace and CPace

• AuCPace / CPace analysis in the UC framework

• AuCPace25519 and X25519 very efficient on ARM Cortex-M0 and M4, competitive even with 

the fastest known approaches benefiting from endomorphisms.

We thank all reviewers/referees from CHES and CFRG for their care with the manuscript and the 

constructive and helpful feedback.
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Updates from summer 2019 included in eprint version of the TCHES paper

https://eprint.iacr.org/2018/286.pdf (pre-computation attack resistance option)

Thank you very much for your attention
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https://eprint.iacr.org/2018/286.pdf

