The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations

Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni

template building

Labels

- typically: intermediate states computed from plaintext and keys
- Hamming weight (distance) leakage model commonly used
- problem: introduces imbalanced data
- for example, occurrences of Hamming weights for all possible 8-bit values:

HW value	0	1	2	3	4	5	6	7	8
Occurrences	1	8	28	56	70	56	28	8	1

Why do we use HW?

• often does not reflect realistic leakage model

Why do we use HW?

• often does not reflect realistic leakage model

Why do we use HW?

- reduces the complexity of learning
- works (sufficiently good) in many scenarios for attacking

Why do we care about imbalanced data?

- most machine learning techniques rely on loss functions that are "designed" to maximise accuracy
- in case of high noise: predicting only HW class 4 gives accuracy of 27%
- but is not related to secret key value and therefore does not give any information for SCA

What to do?

- in this paper: transform dataset to achieve balancedness?
- how?
 - throw away data
 - add data
 - (or choose data before ciphering)

Random under sampling

- only keep # of samples equal to the least populated class
- binomial distribution: many unused samples

Random under sampling

- only keep # of samples equal to the least populated class
- binomial distribution: many unused samples

Random oversampling with replacement

- randomly selecting samples from the original dataset until amount is equal to largest populated
- simple method, in other context comparable to other methods
- may happen that some samples are not selected at all

Random oversampling with replacement

- randomly selecting samples from the original dataset until amount is equal to largest populated
- simple method, in other context comparable to other methods
- may happen that some samples are not selected at all

SMOTE

- synthetic minority oversampling technique
- generating synthetic minority class instances
- nearest neighbours are added (corresponding to Euclidean distance)

SMOTE

- synthetic minority oversampling technique
- generating synthetic minority class instances
- nearest neighbours are added (corresponding to Euclidean distance)

SMOTE+ENN

- Synthetic Minority Oversampling Technique with Edited Nearest Neighbor
- SMOTE + data cleaning
- oversampling + undersampling
- removes data samples whose class different from multiple neighbors

SMOTE+ENN

- Synthetic Minority Oversampling Technique with Edited Nearest Neighbor
- SMOTE + data cleaning
- oversampling + undersampling
- removes data samples whose class different from multiple neighbors

Experiments

- in most experiments SMOTE most effective
- data argumentation without any specific knowledge about the implementation / dataset / distribution to balance datasets
- varying number of training samples in the profiling phase
 - Imbalanced: 1k, 10k, 50k
 - SMOTE: (approx) 5k, 24k, 120k

Dataset 1

- low noise dataset DPA contest v4 (publicly available)
- Atmel ATMega-163 smart card connected to a SASEBO-W board
- AES-256 RSM (Rotating SBox Masking)
- in this talk: mask assumed known

Data sampling techniques

• dataset 1: low noise unprotected

Dataset 2

- high noise dataset
- AES-128 on Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board.
- publicly available on github: https://github.com/ AESHD/AES HD Dataset

Data sampling techniques

• dataset 2: high noise unprotected

Dataset 3

- AES-128: Random delay countermeasure => misaligned
- 8-bit Atmel AVR
 microcontroller
- publicly available on github: https:// github.com/ ikizhvatov/ randomdelays-traces

Data sampling techniques

• dataset 3: high noise with random delay

Further results

- additionally we tested SMOTE for CNN, MLP, TA:
 - also beneficial for CNN and MLP
 - not for TA (in this settings):
 - is not "tuned" regarding accuracy
 - may still benefit if #measurements is too low to build stable profiles (lower #measurements for profiling)
- in case available: perfectly "natural"/chosen balanced dataset leads to better performance
- ... more details in the paper

Evaluation metrics

- SR: average estimated probability of success
- GE: average estimated secret key rank
- depends on the number of traces used in the attacking phase
- average is computed over number of experiments

- ACC: average estimated probability (percentage) of correct classification
- average is computed over number of experiments

Evaluation metrics

• SR: average estimated ACC: average estimated prchability (percentage) probability of success ect classification No translation GE: average est secret key rank average is computed over number of depends on the number experiments of traces used in the attacking phase average is computed over number of experiments

Evaluation metrics

- SR: average estimated probability of success
- GE: average estimated secret key rank
- depends on the number of traces used in the attacking phase indication

- ACC: average estimated probability (percentage) of correct classification
- average is computed over number of experiments

indication: if acc high, GE/SR should "converge quickly"

 average is computed over number of experiments

SR/GE vs acc

Global acc vs class acc

- relevant for non-bijective function between class and key (e.g. class involved the HW)
- the importance to correctly classify more unlikely values in the class may be more significant than others
- accuracy is averaged over all class values

Label vs fixed key prediction

- relevant if attacking with more than 1 trace
- accuracy: each label is considered independently (along #measurements)
- SR/GE: computed regarding fixed key, accumulated over #measurements
- low accuracy may not indicate low SR/GE

more details, formulas, explanations in the paper...

Take away

- HW (HD) + ML is very likely to go wrong in noisy data!
 - data sampling techniques help to increase performances
 - more effective to collect less real sample + balancing techniques than collect more imbalanced samples
- ML metrics (accuracy) do not give a precise SCA evaluation!

* global vs class accuracy

* label vs fixed key prediction