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Motivation: Hardware Root of Trust (RoT)
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[1] Verbauwhede, , Ingrid, The need for hardware roots of trust, keynote speech, HOST 2019. 
[2] Roel, Maes., 2012. Physically unclonable functions: Constructions, properties and applications. Katholieke Universiteit 
Leuven, Belgium. 
[3] Ganji, Fatemeh. On the learnability of physically unclonable functions. Springer International Publishing, 2018.

• Reliance of cryptographic 
protocols on secrets and 
random numbers 

• "A root of trust is a 
component at a lower 
abstraction layer, upon 
which the system relies for 
its security.” [1]

[2,3]



Phyiscal(ly) Unclonable Function (PUF)
• Exploiting manufacturing process 

variations on different chips 
• Physical entity that is embodied in a 

physical structure 
• Easy to evaluate but hard to predict! 
• Easy to make but practically impossible 

to duplicate 
• Not a true function in a mathematical 

sense: one possible input >> more 
possible output
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[1] Gassend, Blaise, et al. "Silicon physical random functions." Proceedings of 
the 9th ACM conference on Computer and communications security. ACM, 2002. 
[2] Suh, G. Edward, and Srinivas Devadas. "Physical unclonable functions for 
device authentication and secret key generation." 2007 44th ACM/IEEE Design 
Automation Conference. IEEE, 2007.



Applications: Authentication & Key Generation
• PUF is used in two phases: 
• Enrolment: A number of CRPs are collected and 

stored in the database (CRP database) 
• Verification: A challenge from CRP database is 

applied to the PUF and the response compared 
with the corresponded response in data base 

• Observed response close enough >> verified! 
• Key Storing (No key is stored actually!)  
• Key is generated when needed!
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PUF Properties
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PUF Properties
1. Evaluable: given Π and x, it is easy to evaluate y = Π(x).
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Non-electronical PUFs

• Non-electronic constructions with PUF-like 
properties 

• Electronic and digital techniques are used to 
process the PUF responses 

• Example: Optical PUF [1] 
• The core element: Optical token with 

microscopic structures 
• Irradiating the token with a different laser 

orientations (challenge) to create a speckle 
pattern 

• Gabor hashing of the image to get the 
response
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Electrical PUFs
• Electrical/Electronical PUFs (analog responses): 
• PUF constructions whose basic operation 

consists of an analog measurement of an 
electric or electronic quantity 

• Example: Coating PUF [1] 
• Comb-shaped sensors in the metal layer of the 

IC 
• Random dielectric coating sprayed on top of the 

sensor 
• Challenge: Sensor selection 
• Response: Capacitance measurement
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Silicon PUFs

• Digital Intrinsic Silicon PUFs [1]: 
• PUF and measurement system should be fully integrated in the embedding 

device 
• PUF should be constructible by available manufacturing process of embedding 

device 
• Two categories based on the number of challenge-response pairs [2]: 
• Weak PUFs: SRAM PUFs, Butterfly PUFs, Ring-Oscillator PUFs, etc. 
• Strong PUFs: Arbiter PUFs, Bistable Ring PUFs, etc.
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SRAM & Butterfly PUFs
• Example of Memory-based PUFs: 

SRAM PUFs 
• Using the bistability behaviour of 

SRAM cells 
• Bistability because of MOSFET 

mismatches 
• Assumption: Attacker cannot 

readout the SRAM or Register 
values!
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Arbiter PUFs
• Utilizing intrinsic timing differences of 2 

symmetrically designed electrical paths 
• Direct or crossed paths in each stage 

based on challenge bit 
• Binary response by the Arbiter based on 

arrival of first signal 
• Assumption: Attacker cannot measure 

individual delays!
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[1] Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M. and Devadas, S., 2004, June. A technique to build a secret key in 
integrated circuits for identification and authentication applications. In VLSI Circuits, 2004. Digest of Technical Papers. 2004 
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Ring-Oscillator PUFs

• Ring oscillators generates a clock like 
signal 

• The frequency is partially random 
• Two ROs are selected and their 

frequencies are compared to generate 
a binary response! 

• Assumption: Attacker cannot 
measure the ring frequencies!
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Bistable Ring PUFs

• Using bistability of inverter chains 
(similar to a larger SRAM cell) 

• Combining 2n inverters in loop to 
have an exponential challenge 
space 

• Assumption: The exact 
mathematical model is not 
known!
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[1] Chen, Qingqing, et al. "The bistable ring PUF: A new 
architecture for strong physical unclonable functions." 2011 
IEEE International Symposium on Hardware-Oriented Security 
and Trust. IEEE, 2011.
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Metrics



Metrics for evaluating the quality of PUFs (1) [1] 

• Uniqueness: how unique are the PUF responses among different chips 
• n-bit response from a PUF 

• pair-wise HDs among chips.  
• For a truly random PUF output, it should be close to 50%. 

 14

# Chips
# Diff. Chips

[1] Maiti, A., Casarona, J., McHale, L. and Schaumont, P., 2010, June. A large scale characterization of RO-PUF. In 2010 IEEE 
International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 94-99). IEEE.



Metrics for evaluating the quality of PUFs (2) [1] 

• Uniformity: 

• It should be close to 50%. 

• Bit-aliasing:  e.g., the t-th bit has same binary value across all the chips.  

• It should be close to 50%.
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Metrics for evaluating the quality of PUFs (3) [1] 

• Reliability: Reliability quantifies the change in PUF outputs over varying 
operating conditions.  

• Estimated as the average intra-die Hamming distance i.e. HD(R , R’) over x 
samples: 
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Fuzzy behavior

• r is fuzzy 
• it is not entirely uniformly distributed 
• it is not perfectly reproducible when measured multiple times
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Fuzzy behavior

• r is fuzzy 
• it is not entirely uniformly distributed 
• it is not perfectly reproducible when measured multiple times

• Due to the physical nature:  
• random physical processes that introduce entity-specific features 

during manufacturing are typically not uniformly distributed 
• the response evaluation mechanisms of a PUF construction are subject 

to physical noise and environmental conditions
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False Acceptance, False Rejection, and Equal Error Rates
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False Acceptance, False Rejection, and Equal Error Rates

• During the identification phase of a PUF-based identification system 
• response of an entity is checked against a list of enrolled responses 
• when an enrolled response is found whose distance to the presented 

response is smaller or equal to the identification threshold, then the entity 
is identified as the matching entry in the list. 

Fuzzy identification system based on such a identification threshold is not 
100% reliable

 18
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Machine Learning Attacks 
What can be learned by a designer?



 Learnability and security
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“In cryptography, the major goal is to “prove” security under the 
broadest possible definition of security, [...].  
[...] , in the typical paradigm it is shown that there is no 
polynomial-time [learning] algorithm that can “break” the 
security of the system. ” 

[1] Rivest, R.L., 1991, November. Cryptography and machine learning. In International Conference on the Theory and Application of 
Cryptology (pp. 427-439). Springer, Berlin, Heidelberg.
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An example of their differences: Exact vs. approximate inference 

• In the practical cryptographic domain: a “total break” is needed, i.e., the 
attacker determines the unknown secret key.  

• Typically, it is not possible to well approximate the set of possible 
cryptographic functions.  

• The theoretical cryptography: definitions of security excluding even 
approximate inference by the cryptanalyst. Such theoretical definitions 
and corresponding results are thus applicable to derive results on the 
difficulty of (even approximately) learning, as we will see. 

 22



An example of their differences: Exact vs. approximate inference 

• In the practical cryptographic domain: a “total break” is needed, i.e., the 
attacker determines the unknown secret key.  

• Typically, it is not possible to well approximate the set of possible 
cryptographic functions.  

• The theoretical cryptography: definitions of security excluding even 
approximate inference by the cryptanalyst. Such theoretical definitions 
and corresponding results are thus applicable to derive results on the 
difficulty of (even approximately) learning, as we will see. 

• In the machine learning field: both exact inference and approximate 
inference.  

• Because exact inference is often too difficult to perform efficiently, much 
of the more recent research in this area deals with approximate inference. 
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Machine learning (ML) attacks against PUFs
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model of a counterfeit IC” [1].

• “[some PUF] circuits are not difficult 
enough to model, contrarily to what we had 
conjectured [before]” [2].

• “Unfortunately, none of the candidate [PUF] 
constructions have a proof of 
computational security, and further, most, if 
not all, of them have been shown to be 
susceptible to ML attacks” [3].
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ML algorithms

• Empirical learning approaches 
• No predefined levels of accuracy and confidence
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Empirical vs. Provable ML (1)

• Collect varying number of challenge-
response pairs (CRPs) at random 

• Employ ML algorithms for each set of 
CRPs in a plug-and-play fashion 

• Drawbacks 
• Assessment is algorithm, parameter, 

and instance dependent with no 
convergence guarantees 

• Standardization and comparison 
infeasible
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Empirical vs. Provable ML (2)

• Takes desired number of CRPs (M), 
accuracy (ε), and confidence (δ) for ML 
as input parameters 

• (May) Adaptively requests specific CRPs  
• Main Features 

• Provably determines if PUF is learnable 
by any polynomial ML algorithm for 
specified input parameters
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Arbiter PUFs

• The security of Arbiter PUFs [1] is relying on an assumption: 

• The attacker cannot measure the delays in each stage
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Arbiter PUF and its linear behavior
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An Example: Provable learning of Arbiter PUFs
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What helps an adversary…

• Linear behavior of Arbiter PUFs: an example of the model representing the 
internal functionality of the respective PUF 

• What happens if this model is unknown? 
• Prime example: Bistable Ring (BR) PUFs

 30
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BR PUFs 

• No precise mathematical model of the BR PUF functionality
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• Example of a 1-junta 
• K-junta learning: finding the relevant coordinates 
• Algorithm presented by, e.g., Angluin
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Learning juntas

• Example of a 1-junta 
• K-junta learning: finding the relevant coordinates 
• Algorithm presented by, e.g., Angluin
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Is ‘K’ a constant value? 
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What we know about BR PUFs

• Practical observations 

• Statistical analysis of 64-bit BR-PUFs: 5 influential bits [17]

• Our experiments on 64-bit BR PUFs implemented on Altera Cyclone IV 
FPGAs: 7 influential bits 

• Mathematical, more precise observation

• K-junta testing: determining whether the function fPUF is involved in the 
class of K-junta functions, e.g., 

•  for 64-bit BR PUFs, K=7

!34
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Approximation (or cutting the tail!)
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Approximation (or cutting the tail!)

• Low-degree algorithm: for some functions, a polynomial number of examples 
required to approximate the “low” Fourier coefficients [1]
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A PUF can be represented by a Boolean function.  
But, do we reflect some important characteristics of that, e.g., 

being noisy, biased, etc., in this model?
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Attribute Noise in Real-world Implementations 
• Some examples 

• The effect of the routing 
• Having not sufficient deviation in the 

manufacturing process variations from one 
instance to another  

• Aging 
• What is the impact of these? More biased 

responses.  

• Under the noisy conditions: the approximated 
Fourier coefficients are attenuated, and a 
polynomial increase in the number of example [1]

 40
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[1] Bshouty, N.H., Jackson, J.C. and Tamon, C., 2003. Uniform-distribution attribute noise learnability. Information and 
Computation, 187(2), pp.277-290.
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Fourier-based attacks are still feasible! 
BUT 

To prove the security against ML attacks, should we rely on the 
infeasibility of some ML attacks?! 



What to do to stop the attacker?

• Ingredient:  
• Controlling mechanisms,  
• Non-linearity, 
• Adding the noise
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Model of the PUF 
functionality

Establishment of 
a proper 

representation

Finding a 
polynomial time 

algorithm

At least, known 
attacks are 
ineffective

Are you sure that it is 
secure now?

But, it can be attacked
one way or another. 



Take-home Message

• If we are given a set of CRPs, how to 
proceed? 

• Find the most appropriate 
representation 

• Find the most efficient algorithm 
to learn  that representation 

• Be careful about what you 
conclude ;-)

 43

Source: https://blogs.mathworks.com/loren/2016/08/08/text-
mining-machine-learning-research-papers-with-matlab/



Future Directions
• Development of a new benchmarking 

system and Security assessment tools and 
metrics 
• Boolean and Fourier analyses  
• Property testing 
• Metrics, e.g., the average sensitivity 

• Infeasibility of PAC learning and its 
consequences  
• No polynomial-sized representation of a 

function, and/or existence of no 
polynomial time algorithm to learn a 
target concept or its associated 
representation  

• Empirical algorithms may still be useful! 
• Generalization of the results of this 

study to other PUFs

 44
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 46

Physical Attacks



Are PUFs Tamper-evident?

• PUFs are believed to be tamper-evident against invasive attacks! 
• Being tamper-evident against fully-invasive attacks have been experimentally 

verified for optical and coating PUFs.  
• Unfortunately, for Intrinsic PUFs, limited information on tamper-evidence is 

available in the literature.  
• mechanical stress from depackaging and substrate thinning have negligible effects 

on the absolute and relative frequencies of ring-oscillators [14]  
• PUF developers do their best to mitigate the noisy responses of the PUF by 

different error correction techniques.  
•
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Optical Attacks

 48

• Access to the surface of the chip without 
creating contacts with internal wires 

• Optical interactions with transistors using 
known Failure Analysis (FA) tools 

• Normally does not damage the system 

• May or may not leave tamper evidence

[1] Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., & Seifert, J. 
P. (2012, September). Simple photonic emission analysis of AES. 
In International Workshop on Cryptographic Hardware and 
Embedded Systems (pp. 41-57). Springer, Berlin, Heidelberg.



IC Backside vs. IC Frontside
• Frontside: Multiple interconnect layers obstruct the optical path to transistor 

devices 
• Backside: Active devices are directly accessible

 49

Nanoscale Debug & Diagnosis | TU Berlin
page 1

Optical interaction through frontside: each node has 
individual signature due to interconnect intransparency

Access through chip backside: all nodes show same 
interaction scenario  …and compare quantitatively! 

Read out much more precise 

From backside, all nodes act alike

[1] Boit, Christian, and Philipp Scholz. "IC Debug and Fault Isolation for an Age of IoE and High Data Rates—A Vision." 
IEEE Transactions on Components, Packaging and Manufacturing Technology 8.5 (2018): 719-724.



Optical Techniques

• Photon Emission 

• Laser Stimulation 

• Laser Fault Injection 

• Optical Probing

 50

Nanoscale Debug & Diagnosis | TU Berlin
page 3

Optical Backside 
Circuit Analysis

CCD

Modulation

Laser Stimulated
Electrical Signal 

Black Body 
or Photon 
Emission

Laser
• Photon Emission 
• Rise and Fall Events of

Digital Signal Pattern

• Modulation of reflected
light by device operation:
Contactless Probing

• Laser Stimulated
Current or Voltage Sources: 
Delay / Fault Injection

Bulk
Si

[1] Boit, Christian, and Philipp Scholz. "IC 
Debug and Fault Isolation for an Age of 
IoE and High Data Rates—A Vision." 
IEEE Transactions on Components, 
Packaging and Manufacturing Technology 
8.5 (2018): 719-724.



PUF Targets and Attack Techniques
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Laser Fault Injection

Photonic Emission Analysis

h𝛎

Optical Contactless Probing

1st scenario:
๏ PUF implementations are part of the 

user design and used during runtime
๏ Assumption: Access to the challenges 

and the responses are available

2nd scenario:
๏ PUF implementations are used 

during configuration to either 
decrypt the bitstream or authenticate 
the device to a RoT

๏ Assumption: No access to the 
challenges and the responses

[1] Tajik, Shahin. On the physical security of physically 
unclonable functions. Springer, 2018.



Optical Emission of Arbiter PUF
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[1] Tajik et al. Emission Analysis of Hardware Implementations. DSD 2014: pp. 528-534 
[2] Tajik et al. Physical Characterization of Arbiter PUFs. CHES 2014: pp. 493-509 
[3] Tajik et al. Photonic Side Channel Analysis of Arbiter PUFs. Journal of Cryptology, 2017



• Measuring timing differences at the end of the 
chain on both paths 

• No response is needed! 
• Characterization of the PUF with n+1 

challenge: 1 reference challenge and n 
challenge with hamming distance one 

• E.g. 
C(0) = 0000…00 >> Reference 
C(1) = 1000…00 >>  δ1 = +10 ps 
C(2) = 0100…00 >>  δ2 = +185 ps 
C(3) = 0010…00 >>  δ3 = -16 ps 

C(x) = 1110…00 >>  +179 ps 
  measured value =  +175 ps 
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Linear increase in the required challenges with the number 
of PUFs in an XOR arbiter PUF!



Laser Fault Attack on XOR and RO PUF [1]

• XOR arbiter PUF: 
• Simplifying ML attacks by 

deactivating all Arbiter chains 
except one! 

• Iterating the same approach until 
all Arbiter PUFs are learnt! 

• RO PUF: 
• Reducing the Entropy of PUF by 

deactivating several ROs!
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[1] Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, Christian Boit: Laser Fault Attack on Physically 
Unclonable Functions. FDTC 2015: pp. 85-96
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Fault Injection into the Lookup Tables
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Attack against SRAM PUF

• Two obstacles for the attacker 
• How can the SRAM be read when no electrical access to the SRAM is 

available from the outside? 
• How can the CRP behavior of one PUF be digitally and physically 

cloned on another device?
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Laser Stimulation

 57

VDD (+)

GND (-)

CLaser

Current 
Amplifier P+-

Power Supply

Laser beamIC backside

Seebeck Generator

๏ The laser beam generates a 
Seebeck voltage (TLS) by 
creating a temperature gradient 
across dissimilar materials

๏ The chip is scanned with 
a laser beam with either 
thermal or photoeletric 
interaction (TLS/PLS)




Thermal Laser Stimulation (TLS) of SRAM Cells

 58

๏ Reaction of different areas of SRAM cells to 
TLS, depending on the stored value 

๏ The Seebeck voltage changes current flow 
through the “off” transistors >> leakage 
current increases



Reading SRAM of ATMega328P 

Reading SRAM using Photon Emission 

Reading SRAM using laser stimulation
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Cloning SRAM PUF

• Trenching silicon with FIB 
• Removing contacts or trimming 

transistors by FIB to change their 
power-up states
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[1] Helfmeier, C., Boit, C., Nedospasov, D., & Seifert, J. P. (2013, 
June). Cloning physically unclonable functions. In 2013 IEEE 
International Symposium on Hardware-Oriented Security and 
Trust (HOST) (pp. 1-6). IEEE.
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Hard PUFs in Commercial FPGAs



Hard PUF Examples
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SRAM PUF for 
Microsemi SmartFusion2 and IGLOO2 Models

SRAM PUF for Intel/Altera Stratix 10

RO PUF for Xilinx Ultrascale+



Why Vendors Trust PUFs?

• The main assumption of attacks against PUFs: Access to the Challenge and 
Responses is available! 

• Since the implemented soft or hard PUFs inside of FPGAs are controlled PUFs, 
where a non-invasive electrical access to the challenges and responses of the 
PUFs is restricted by either physical or algorithmic countermeasures, most of the 
reported modeling and semi-invasive attacks are ineffective. 

• In this case the unprocessed challenges can be transmitted with the first stage 
boot loader to the FPGA. 

• The response of the PUF will also be generated and processed inside the device 
and cannot be observed in a non-invasive way.
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Security of FPGAs

• Bitstream: configuration data 
containing Intellectual Property (IP) 
and secrets for reconfigurable 
hardware 

• The bitstream can be loaded in the 
field (adversarial environment) 

• Threats: cloning, reverse-engineer, 
tampering or spoofing
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ASIC 
config 
circuit

SRAM-based 
FPGA / SoC

Bitstream ASIC 
config 
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Flash-based 
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Bitstream

01101010
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Remote  
Server



PUF-based Bitstream Configuration

• Loading the decryption key in 
plaintext into FPGA through JTAG 

• Storing the red key in Battery Backed 
RAM (battery needed) or eFuses (no 
battery) 

• Loading the encrypted bitstream in the 
field
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NVM
Encrypted

011010100101

Secret 
Red Key Secret Red Key 

over JTAG

Secret 
Red Key

BBRAM or eFuse
Application 

Design

Encrypted
application 
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AES / 3DES

Decrypted 
Bitstream

FPGA



PUF-based Bitstream Configuration

• Loading the decryption key (Red) in 
plaintext into FPGA through JTAG 

• Encrypting the Red Key with PUF 
responses to generate Black Key 

• Storing Black Key and PUF 
configuration in NVM. 

• Tampering Black Key by semi-invasive 
attacks does not divulge the red key
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NVM
Encrypted
bitstream

011010100101

Secret 
Red Key Secret Red Key 

over JTAG

Encrypted 
Black Key

Application 
Design

Encrypted 
application 
with red key

AES-GCM

Decrypted 
Bitstream

FPGA
PUF

[1] Peterson, E.: White Paper WP468: Leveraging Asymmetric 
Authentication to En- hance Security-Critical Applications Using 
Zynq-7000 All Programmable SoCs. Xilinx, Inc. San Jose, CA (2015)



Optical Probing [1]

• Changes in the absorption coefficient and the refractive index of device in active area by 
electrical field and current. 

• Electro-Optical Probing (EOP) or Laser Voltage Probing (LVP): Optical beam intensity 
altered by voltage/current —> probing of electrical signals on the node 

• Electro-Optical Frequency Mapping (EOFM) or Laser Voltage Imaging (LVI): Feeding 
the reflected signal to a detector with a narrow band frequency filter while scanning the 
laser—> detecting node switching with this frequency
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Laser

Beam 

Splitter

Objective

Lens

DUT

FrontsideBacksideActive Area

Detector

Light 
Source 

[1] Lohrke, H., Tajik, S., Boit, C., & Seifert, J. P. (2016, August). No place to hide: contactless probing of secret data on FPGAs. In 
International Conference on Cryptographic Hardware and Embedded Systems (pp. 147-167). Springer, Berlin, Heidelberg.



Key Extraction using LVI
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Key Extraction using LVI
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Key Extraction using LVP
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Key Extraction using LVP
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Side-Channel Analysis



EM Side-Channel Analysis of RO PUFs [1]

• Measuring the oscillation frequency of 
ROs by electromagnetic radiations 

• Assumption: Attacker has access to 
CRPs
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[1] Merli, Dominik, et al. "Side-channel analysis of PUFs and fuzzy extractors." International Conference on Trust and Trustworthy 
Computing. Springer, Berlin, Heidelberg, 2011.



Hybrid Attacks (SCA + ML) [1]

• Combination of ML techniques with 
SCA: Breaking up to 16 XOR arbiter 
PUF 

• Power side channel 
• Power consumption peaks when the 

flip-flops gives out 1 
• Timing side channel

 72

[1] Rührmair, Ulrich, et al. "Efficient power and timing side channels for physical unclonable functions." International Workshop on 
Cryptographic Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2014.
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Protocol-level Countermeasures



Protocol-level Countermeasures

• Several protocol-level countermeasures against ML and physical attacks have 
been proposed, however, almost all of them have been broken! 

• Very good security analysis of PUF protocols:
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Lockdown Protocol

• Restricting the feeding of arbitrary challenges to the PUF. 
• Preventing repeatable feeding of the same challenge to prevent side-channel 

leakage.
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Lockdown Protocol 1

• Due to the lockdown, the adversary 
cannot issue a not-yet- seen packet c||r1 
(not-yet-released by the server) and get 
the corresponding returning response 
packet r2’; as a result, the challenges 
can be deterministically generated, e.g., 
using a counter. Every authentication is 
unique since the challenge is non-
repeating, based on a server-side 
counter. 

• WPUF: Weak PUF like SRAM or RO 
PUF
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Lockdown Protocol 2

• During an authentication event, the server 
obtains a device identifier id packet which now 
also includes a challenge cD from the device; 
the device-side challenge is to allow a 
challenge exchange, so neither the device nor 
the server can unilaterally determine all the 
bits of <c>.  

• It prevent repeated measurements to, for 
example, obtain photonic information 

• SPUF: Strong PUF like XOR Arbiter PUF 
• Server keeps a simulated SPUF (In 

enrollment phase, individual chains of an XOR 
arbiter PUF can be modelled by giving access 
to  response of all chains. The simulated 
model will be stored in the database)
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Thank you


