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[1] Verbauwhede, , Ingrid, The need for hardware roots of trust, keynote speech, HOST 2019.
[2] Roel, Maes., 2012. Physically unclonable functions: Constructions, properties and applications. Katholieke Universiteit

Leuven, Belgium.
[3] Ganji, Fatemeh. On the learnability of physically unclonable functions. Springer International Publishing, 2018.
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Phyiscal(ly) Unclonable Function (PUF)

« Exploiting manufacturing process
variations on different chips

* Physical entity that is embodied in a
physical structure

« Easy to evaluate but hard to predict!

« Easy to make but practically impossible
to duplicate t t,

 Not a true function in a mathematical

sense: one possible input >> more — " | — \
possible output

[1] Gassend, Blaise, et al. "Silicon physical random functions." Proceedings of
the 9th ACM conference on Computer and communications security. ACM, 2002.
[2] Suh, G. Edward, and Srinivas Devadas. "Physical unclonable functions for
device authentication and secret key generation." 2007 44th ACM/IEEE Design
Automation Conference. IEEE, 2007.
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« PUF is used in two phases:

 Enrolment: A number of CRPs are collected and
stored in the database (CRP database)

« Verification: A challenge from CRP database is
applied to the PUF and the response compared
with the corresponded response in data base

* QObserved response close enough >> verified!

« Key Storing (No key is stored actually!)
* Key is generated when needed!

Alice 8 é@
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[1] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions.
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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1. Evaluable: given 'l and x, it is easy to evaluate y = (x).

[1] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions.
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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1. Evaluable: given 'l and x, it is easy to evaluate y = (x).

2. Unique: (x) contains some information about the identity of the physical entity
embedding I1.

[1] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions.
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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1. Evaluable: given 'l and x, it is easy to evaluate y = (x).

2. Unique: (x) contains some information about the identity of the physical entity
embedding I1.

3. Reproducible: y = '(x) is reproducible up to a small error.

4. Unclonable: given I, it is hard to construct I'# 'l such that for all x in X: ['(x) # (x)
up to a small error.

5. Unpredictable: given only a set Q = {(xi,yi = ['l(xi))}, it is hard to predict yc = I'l(xc) up
to small error, for xc a random challenge such that (xc,.) ¢ Q.

6. One-way: given only y and 1, it is hard to find x such that y = I'(x).
7. Tamper evident: altering the physical I'1 transforms N—[1" such that with high
probability ax € X: [1(x) # 1°(x).

[1] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions.
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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Non-electronical PUFs
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 Non-electronic constructions with PUF-like

p 1o p € rt 1SS Speckle pattern

» Electronic and digital techniques are used to
process the PUF responses

 Example: Optical PUF [1]

 The core element: Optical token with
microscopic structures

Laser orientation

[ eksal—
 lrradiating the token with a different laser C SR ,Qa..en:"e:::,,m Z'/ [\\
orientations (challenge) to create a speckle e (| =
pattern B « | |E
« Gabor hashing of the image to get the [2]
response

[1] Pappu, Ravikanth, et al. "Physical one-way functions." Science 297.5589 (2002): 2026-2030.
[2] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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« Electrical/Electronical PUFs (analog responses):
 PUF constructions whose basic operation

~\ Opaque & chemically inert CRP Database

Random dielectric coating

consists of an analog measurement of an e o E e e e St B Cor-shaped g 4
electric or electronic quantity - em= .-_.; . s
- Example: Coating PUF [1] S T — "°s:°"”
_ Silicon substrate e | 8
« Comb-shaped sensors in the metal layer of the g
IC
« Random dielectric coating sprayed on top of the
sensor

Measure capacitance

« Challenge: Sensor selection [2]

« Response: Capacitance measurement

[1] Skoric, B., Maubach, S., Kevenaar, T. A., & Tuyls, P. (2006). Information-theoretic analysis of coating PUFs. IACR Cryptology
ePrint Archive, 2006, 101.

[2] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research directions
In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer
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Silicon PUFs

 Digital Intrinsic Silicon PUFs [1]:
 PUF and measurement system should be fully integrated in the embedding
device

« PUF should be constructible by available manufacturing process of embedding
device

« Two categories based on the number of challenge-response pairs [2]:
 Weak PUFs: SRAM PUFs, Butterfly PUFs, Ring-Oscillator PUFs, etc.
« Strong PUFs: Arbiter PUFs, Bistable Ring PUFs, etc.

[1] Roel, M. A. E. S. "Physically unclonable functions: Constructions, properties and applications." Katholieke Universiteit Leuven,
Belgium (2012).

[2] RUhrmair, U., Sehnke, F., Sdolter, J., Dror, G., Devadas, S., & Schmidhuber, J. (2010, October). Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM conference on Computer and communications security (pp. 237-249). ACM.
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« Example of Memory-based PUFs: J J
SRAM PUFs a<hq L
« Using the bistability behaviour of __[>o__ EF 5
SRAM Ce”S (a) Logical circuit of an (b) Electrical Tcircuit‘ of an
. . SRAM (PUF) cell. il\{\(;\sl t(PUF) cc'll in standard
- Bistability because of MOSFET MOS techmclogy.
mismatches
 Assumption: Attacker cannot
readout the SRAM or Register e
values! |
(c) Logical circuit of a latch (d) Schematical circuit
(PUF) cell. of a butterfly PUF cell.

[1] [2] Maes, R and Verbauwhede, | (2008). Physically unclonable functions: A study on the state of the art and future research

directions. In Towards Hardware-Intrinsic Security, (pp. 3-37). Springer

[2] Kumar, Sandeep S., et al. "The butterfly PUF protecting IP on every FPGA." 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust. IEEE, 2008.

[3] Roel, M. A. E. S. "Physically unclonable functions: Constructions, properties and applications." Katholieke Universiteit

Leuven, Belgium (2012).
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Utilizing intrinsic timing differences of 2 — — L
symmetrically designed electrical paths | |, ~ N o
Direct or crossed paths in each stage AN\ I T S I - -

' T T f 1
based on challenge bit dh0 ol oo o

Binary response by the Arbiter based on
arrival of first signal

Assumption: Attacker cannot measure

individual delays! v
—D ar—*
iy T
RS L ... I . >
c[1] c[2] c[3] c[n]

X[0] X[1] X[126] X[127]

[1] Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M. and Devadas, S., 2004, June. A technique to build a secret key in
integrated circuits for identification and authentication applications. In VLSI Circuits, 2004. Digest of Technical Papers. 2004
Symposium on . 176-179). IEEE.
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* Ring oscillators generates a clock like L N
signal r>> > <
- The frequency is partially random h r>>’—>—> 1B [t
« Two ROs are selected and their ;/(
frequencies are compared to generate | cits--oa :
a binary response! : '
 Assumption: Attacker cannot _ § counter 2
measure the ring frequencies! :

[1] Suh, G. Edward, and Srinivas Devadas. "Physical unclonable functions for device authentication and secret key
generation." 2007 44th ACM/IEEE Design Automation Conference. IEEE, 2007.
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« Using bistability of inverter chains

(similar to a larger SRAM cell) i) \ "o .O,i7’.17[>°71?j’f’0,
« Combining 2n inverters in loop to ,
have an exponential challenge ! | Ans(outz)
space VR Tl e st st ot o)
- Assumption: The exact nelouta) - indots) TR Do A TR
mathematical model is not cnl cfo-1] cfi-+3] cli+2]

known! e U e U s T

reset r
[1] Chen, Qingging, et al. "The bistable ring PUF: A new Jg; g

/._.

—_ o\
._.Io/ \ =
= o\ | /=

o
w0
0]

architecture for strong physical unclonable functions." 20711 N
IEEE International Symposium on Hardware-Oriented Security

and Trust. IEEE, 2011. T T e T N T

c[1] c[2] cli] cli+1]
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 Uniqueness: how unique are the PUF responses among different chips
 n-bit response from a PUF

m
2 \  HD(R,,R
- ; ; (R v)xlOO%
m-—1) n
/ +1
# Chips /

# Diff. Chips

e pair-wise HDs among chips.
 For a truly random PUF output, it should be close to 50%.

[1] Maiti, A., Casarona, J., McHale, L. and Schaumont, P., 2010, June. A large scale characterization of RO-PUF. In 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 94-99). IEEE.
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Metrics for evaluating the quality of PUFs (2) [1]
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 Uniformity:

n

|t should be close to 50%.

e Bit-aliasing: e.g., the t-th bit has same binary value across all the chips.

m

|t should be close to 50%.

[1] Maiti, A., Casarona, J., McHale, L. and Schaumont, P., 2010, June. A large scale characterization of RO-PUF. In 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 94-99). IEEE.
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* Reliability: Reliability quantifies the change in PUF outputs over varying
operating conditions.

 Estimated as the average intra-die Hamming distance i.e. HD(R , R’) over x
samples:

X

1 z HD(RL, Rl{,y)

X n
y=1

X 100%
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* Reliability: Reliability quantifies the change in PUF outputs over varying
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Fuzzy behavior FyC:
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e jtis not entirely uniformly distributed

e itis not perfectly reproducible when measured multiple times
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e ris fuzzy ””

e itis not entirely uniformly distributed
e itis not perfectly reproducible when measured multiple times

* Due to the physical nature:

« random physical processes that introduce entity-specific features
during manufacturing are typically not uniformly distributed

 the response evaluation mechanisms of a PUF construction are subject
to physical noise and environmental conditions

|7
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False Acceptance, False Rejection, and Equal Error Rates FVC
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 During the identification phase of a PUF-based identification system
 response of an entity is checked against a list of enrolled responses

 when an enrolled response is found whose distance to the presented
response is smaller or equal to the identification threshold, then the entity
is identified as the matching entry in the list.

Fuzzy identification system based on such a identification threshold is not
100% reliable




Machine Learning Attacks
What can be learned by a designer?
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e Machine learning and cryptanalysis
sharing same notions and concerns
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Source tagxedo.com

[1] Rivest, R.L., 1991, November. Cryptography and machine learning. In International Conference on the Theory and Application of
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“In cryptography, the major goal is to “prove” security under the
broadest possible definition of security, [...].

[...] , in the typical paradigm it is shown that there is no
polynomial-time [learning] algorithm that can “break” the
security of the system. ”

[1] Rivest, R.L., 1991, November. Cryptography and machine learning. In International Conference on the Theory and Application of
Cryptology (pp. 427-439). Springer, Berlin, Heidelberg.
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* In the practical cryptographic domain: a “total break” is needed, i.e., the
attacker determines the unknown secret key.

 Typically, it is not possible to well approximate the set of possible
cryptographic functions.

 The theoretical cryptography: definitions of security excluding even
approximate inference by the cryptanalyst. Such theoretical definitions
and corresponding results are thus applicable to derive results on the
difficulty of (even approximately) learning, as we will see.

22
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* In the practical cryptographic domain: a “total break” is needed, i.e., the
attacker determines the unknown secret key.

 Typically, it is not possible to well approximate the set of possible
cryptographic functions.

 The theoretical cryptography: definitions of security excluding even
approximate inference by the cryptanalyst. Such theoretical definitions
and corresponding results are thus applicable to derive results on the
difficulty of (even approximately) learning, as we will see.

* In the machine learning field: both exact inference and approximate
inference.

« Because exact inference is often too difficult to perform efficiently, much
of the more recent research in this area deals with approximate inference.
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(PUF). We argue that a comple: egrated circuit can be
viewed as a silicon PUF and describe a technique to identify
and authenti ividual integrated circuits (I1Cs).
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present experiments w dicate that reliable authenti-
cation of individual ll’c s can be performed even in the
presence of significant environmental variations

We describe how secure smart cards can be built, and also
briefly describe how PUF's can be applied to licensing and
certification applications.
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leads us to a method of ientifying and authenticating in-
dividual ICs and a means of building secure smartcards. A
host of oth are also possible.

Many methods are already available to identify and aw-
thenticate ICs. One can embed a unigue identifier in an IC
to give it a unique identit approach can identify the
IC. but cannot authenticate it. To enable authentication,
one needs to embed a secret key onto the IC. Of course, for
the system to work, this key needs to re 1 secret, which
means that the packaged IC has to be made resistant to at-
tacks that attempt to discover the key. Numerous attacks
described in the literature. These attacks may be inva-
£., removal of the package and layers of the IC, or
differential power analysis that attempts
to determine the key by stimulating the IC and observing
the power and ground r: Making an IC tamper-resistant
to all forms of attacks is a challenging problem and is receiv-
BM'’s PCI Cryptographic Coproces-
processing .\uhs_\'.\ln-m within a

ing some atteation 1]
sor encapsulates a 486

uh makes it Impos-
fy the secrets held

viding high-grade
sible for an attacker (o @

a completely diffe
umuun in this paper. Our thesis is that there is enough
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ch IC, and this character-
) a large signal-to-noise ratio

ization can be g
(SNR). The char
tion of a set of chy
we require the sef

teristic of each 1C. For reliable authe
that envi ental variations vﬂlri
not prod h e inter-1C varia-
tions. We will show in this paper, using experiments and
ysis, that we can perform reliable authentication using
hniques that we now introduce.

How can we produce a unique set of challenge-response
pairs for each IC, even if the digital IC functionality or
ma of the ICs are exactly the same? We rely on there
ugh statistical delay variation for equivalent wires
across different [Cs. Sources of statistical varia-
tion in manufacturing are well documented in the literature
(e.g., (5] and [6]) and statistical variation has been exploited
to create IC identification circuits that generate a single
unique response for each manufactured IC [11]. The tran-
sient response of the IC to a challenge, nput stimulus,

and dev
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e “If the adversary can learn the entire set of
— challenge-response pairs, he can create a
Authentication of Intcgrated ';“;;;j;"f‘ model of a counterfeit IC” [1].

Circuits t\.)-
-L# G
T

'Y  “[some PUF] circuits are not difficult

Marten van Dijk?, Srinivas Devadas'*

e v T o enough to model, contrarily to what we had
conjectured [before]” [2].

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Ezper. 2003; 8:1-20 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

SUMMARY

This paper describes a technique to reliably and securely identify individual integrated
circuits (ICs) based on the precise measurement of circuit delays and a simple challenge-
response protocol. This technique could be used to produce key-cards that are more
difficult to clone than ones involving digital keys on the 1C. We consider potential venues
of attack against our system, and present candidate implementations. Experiments on
Field Programmable Gate Arrays show that the technique is viable. Finally, we analyze
the difficulty of breaking the system in an idealized additive delay model.

KEY WORDS: Physical random function, physical security, smartcard, tamper resistance. unclonability

1. Introduction

We describe a technique to identify and authenticate arbitrary integrated circuits (IC’s) based
on a prior delay characterization of the IC. While IC’s can be reliably mass-manufactured to
have identical digital logic functionality, the premise of our approach is that each IC is unique
in its delay characteristics due to inherent variations in manufacturing across different dies,
wafers, and processes, While digital logic functionality relies on timing constraints being met,
different 1Cs with the exact same digital functionality will have unique behaviors when these
constraints are not met, because their delay characteristics are different

Ressarchers have proposed the addition of specific circuits that produce unique Tespomses [1] Gassend, B., Clarke, D., Van Dijk, M. and Devadas, S., 2002, November. Silicon physical random functions.
due to manufacturing variations in IC's such that these IC's can be identified (e.g., [12]). In Proceedings of the 9th ACM conference on Computer and communications security (pp. 148-160). ACM.
[2] Gassend, B., Lim, D., Clarke, D., Van Dijk, M. and Devadas, S., 2004. |dentification and authentication of
*Correspondence to: Masachumetts Insttute of Tedinology, Laboratory for Computer Sclence, Cambridge, MA integrated circuits. Concurrency and Computation: Practice and Experience, 16(11), pp.1077-1098.
[3] Herder, C., Ren, L., van Dijk, M., Yu, M.D.M. and Devadas, S., 2017. Trapdoor computational fuzzy
Copyright © 2003 John Wiley & Sons, Ltd. extractors and stateless cryptographically-secure physical unclonable functions. IEEE Transactions on
Dependable and Secure Computing, 14(1), pp.65-82.
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e “If the adversary can learn the entire set of
challenge-response pairs, he can create a
Physical Unclonable Functions model of a counterfeit IC” [1]

‘ ‘ L] L] L] L]

N o some circuits are not difficult
efficiently comect a constant frac o ometric source with n)w-nvuil)lmpmx 'J'srlg this comp Aational szzy
extractor. we present a ess construction of stographically-secure Physical Uncionable Function. Our construct requires no

non-volatile (permanent) storage, secure or othe and its computational security can be reduced to the hardness of an LPN variant I t I I t ™} I t I t I I
L]
conjectured [before]” [2
jectu :
1 INTRODUCTION 2) Large enough challenge-response space such that an

under the random oracle model. The construction is *stateless,” because there is noinformation stored between subsequent queries,
el (11 -
1.1 Background and Motivation adversary cannot enumerate all challenge-response .
Sl: ICON Physical Undonable Functions (PUFs) ar T pairs within reasonable time n o u n a e y, n o n e o e c a n I a e

|EEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL 14, NO.1, JANUARYFEBRUARY 2017 85

Trapdoor Computational Fuzzy Extractors
and Stateless Cryptographically-Secure

the construction. provide a proof of computational sacurity, analysis of the security parameter for systam parameter choices, and
present experimental evidence that the construction Is practical and reliable under a wide environmental range.

Index Terms—Fuzzy extractor, physical unclonable function, learning parity with noise, ring oscillators, physically obfuscated keys

which mitigates attacks against the PUF via tfamperng. Moreover, our stateless construction corresponds to a PUF whose outputs are
free of noise because of internal error-comracting capability, which enables a host of applications beyond suthentication. We describe

g tnng 3) An adversary given a polynomial number of

and secret ke eNge-Tesponse pairs cannot pr

stomage without the requirement of secure mem- wj-ct the response

ory or expensive tamper-resistant hardware [26], [53]. This is a new, randomly chosen ¢ -
possible, because instead of storing secrets in digital memory, 4) Not feasible to manufacture two I’Ul s with the same n r I n v r
Fs derive secrets from physical characteristics of the responses to all challenges.

on PUFs rely on the fact that even

mdm.!dc.'unl.g process is the same
fferent ICs, each IC is actually slightly different due
.xru.hcm.nvb variability. PUFs verage this vari-
" information that is unique to the chip
metric”). Due to the manufacturing variability
one cannot manufacture two chips with identical
with full knowledge of the chip’s design. PUF architectures
that exploit different types of manufacturing variability have
been proposed. In addition to gate delay, there are PUFs that
use the poweron state of SRAM, threshold voltages, and
many other physical characteristics to derive the secret.
The (informal) requirements for a PUF are:

1) Upon being given a challenge, the PUF produces a
response, and no other data about the internal func-
tionality of the PUF is revealed.

These requirements correspond to what has been some-
times called a strong PUF in the literature.

The silicon PUF approach is advantageous over standard
secure digital storage for several reasons:

o Since the “secret” is derived from
istics of the IC, the chip must be powered on for the
secret to reside in digital memory. Any physical attack
attempting to extract al information from the chip
therefore must doso e the chip is powered on.

e Authentication of devices and secure communica-

physical character-

tion to devices do not requir

rmbeddmb and per-
he devices. Devices

manently storing secrets in

therefore do not require non-volatile memory, which

is more expensive and not available in all manu-

facturing processes. For example, EEPROMs require

additional mask layers, and b:\(te‘r\-baued RAMs

require an external always-on pOwWer sour

PUFs can therefore serve as one way to address the
growing counterfeit electronics problem [29].

For authentication, PUFs usually adopt a simple chal-

ce.

computational security, and further, most, if
not all, of them have been shown to be

susceptible to ML attacks” [3].

[1] Gassend, B., Clarke, D., Van Dijk, M. and Devadas, S., 2002, November. Silicon physical random functions.

lenge-response protocol. An entity, call it the
collects challenge-response pairs in a secure

In Proceedings of the 9th ACM conference on Computer and communications security (pp. 148-160). ACM.
when in possestin of the PUF. At any lat [2] Gassend, B., Lim, D., Clarke, D., Van Dijk, M. and Devadas, S., 2004. |dentification and authentication of
< Ghalense 1t devce nd we x e repone: % integrated circuits. Concurrency and Computation: Practice and Experience, 16(11), pp.1077-1098.
1 sk mennsnemine sk, e o e [3] Herder, C., Ren, L., van Dijk, M., Yu, M.D.M. and Devadas, S., 2017. Trapdoor computational fuzzy
B e T e extractors and stateless cryptographically-secure physical unclonable functions. IEEE Transactions on
Dependable and Secure Computing, 14(1), pp.65-82.
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 Empirical learning approaches
 No predefined levels of accuracy and confidence

[1] Kearns, M.J. and Vazirani, U.V., 1994. An introduction to computational learning theory. MIT press.
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 Probably Approximately Correct (PAC) learning approaches [1]
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e Collect varying number of challenge-
response pairs (CRPs) at random

« Employ ML algorithms for each set of

CRPs in a plug-and-play fashion l”
e Drawbacks R
. . (¢i, frur(c)) Emplqcal h; ... h
« Assessment is algorithm, parameter, PUF ——=—> Eﬁﬂ?lﬁg 7 >
: - ! t E, =6 £=E
and instance dependent with no 0<i< M, i
convergence guarantees My < Me e

e Standardization and comparison
infeasible
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 Takes desired number of CRPs (M),

accuracy (g), and confidence (6) for ML
as input parameters

 (May) Adaptively requests specific CRPs ln 1M la:a*lg: £
* Main Features

. . . (¢, frur(ci)) Provable ))
 Provably determines if PUF is learnable PUF Learning
by any polynomial ML algorithm for )2 ffM Algorithm

specified input parameters
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 The security of Arbiter PUFs [1] is relying on an assumption:

 The attacker cannot measure the delays in each stage

[1] Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M. and Devadas, S., 2004, June. A technique to build a secret key in
integrated circuits for identification and authentication applications. In VLSI Circuits, 2004. Digest of Technical Papers. 2004
Symposium on . 176-179). IEEE.
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Physical Establishment of Finding a
properties of the [> a proper [> polynomial-time

PUF representation algorithm

&

Model of the PUF
functionality

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2016. PAC learning of arbiter PUFs. Journal of Cryptographic Engineering, 6(3
[2] Angluin, D 1987. Learning regular sets from queries and counterexamples. Information and computation, 75(2), pp.
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properties of the [> a proper [> polynomial-time

PUF representation algorithm

&

Bounded variation of delays:
mapping of real-valued delays
to bounded integer values [1] M?ﬂﬁifig:,g?ig,u':

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2016. PAC learning of arbiter PUFs. Journal of Cryptographic Engineering, 6(3
[2] Angluin, D 1987. Learning regular sets from queries and counterexamples. Information and computation, 75(2), pp.
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Deterministic Finite Automaton (DFA) [1]
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What helps an adversary...
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 Linear behavior of Arbiter PUFs: an example of the model representing the
internal functionality of the respective PUF

Establishment of
a proper
representation

Model of the PUF
functionality

.

polynomial time

Finding a
algorithm

« What happens if this model is unknown?
 Prime example: Bistable Ring (BR) PUFs
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 Determined by the notion of the average sensitivity /()
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 K-junta learning: finding the relevant coordinates
* Algorithm presented by, e.g., Angluin
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 Practical observations
o Statistical analysis of 64-bit BR-PUFs: 5 influential bits [17]

e Our experiments on 64-bit BR PUFs implemented on Altera Cyclone IV
FPGAs: 7 influential bits

« Mathematical, more precise observation

 K-junta testing: determining whether the function f; ¢ is involved in the
class of K-junta functions, e.g.,

« for 64-bit BR PUFs, K=7
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Fourier analysis: An example FyCo | UF

faxos {-1,1}2 2R

C1 C2 Max2(c1,c2)
1 1 1
1 -1 1
1 1 1
1 -1 1
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Fourier analysis: An example FyC |UF

faxos {-1,1}2 2R

f(s)

C1 C2 Max2(c1,c2)

f(S) = Eceey|f(c)xs(c)] s
11 1

\
1 - 1 > H H H
11 1 xs(c) = llies e s o o ka
1 - 1
-0.5
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Fourier analysis: An example FyC |UF

faxos {-1,1}2 2R

(9)

-0.5 ‘H H H
> S
(7] {1} {2} Hﬂ,Z}
-0.5
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Fourier analysis: An example FyC |UF

faxos {-1,1}2 2R

£(9)

C1 C2 Maxz(c1,c2) ~

fle)=>_ F(Sxsle) .
: : : SC[n]
1 -1 1 ]

>3
1 1 1 g {1} {2 1,2}
1 -1 1
-0.5
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f: {-1,13n DR

C1 c2 ¢ ... cp f(c1,62,...,Cn)

f(5)

11 1 . 1 1

1 1 1 )

1 1 1

4 1 A - [ 1 s
g (1} {2 ..

{1,2,...,n}
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pproximation (or cutting the tail!) FyCo | UF

f: {-1,1})n DR
C1 cz €63 ... cn f(c1,62,...,Cn)
()
1 1 1 ... 1 1
1 -1 1 -
-1 1 1
M
4 1 A N H S
g {13 {2} .. | {n}
{1,2,...,n}

Low-degree algorithm: for some functions, a polynomial number of examples
required to approximate the “low” Fourier coefficients [1]

[1] Linial, N., Mansour, Y. and Nisan, N., 1993. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM (JACM), 40(3), pp.607-620.
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f: {-1,1}n >R
Ct € €3 .. Cn f(C1,C2,...,Cn) . low?” *high” |
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-1 1 1 -
M
4 1 A - H S
g ) {2 .. {m
(1,2,....n}

Low-degree algorithm: for some functions, a polynomial number of examples
required to approximate the “low” Fourier coefficients [1]

[1] Linial, N., Mansour, Y. and Nisan, N., 1993. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM (JACM), 40(3), pp.607-620.
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pproximation (or cutting the tail!) FyCo | UF

f: {-1,1}n >R
Ct € €3 .. Cn f(C1,C2,...,Cn) . low” *high” |
£(S)
1 1 1 ... 1 1
1 -1 1 -
-1 1 1 -
M
4 1 - N [ T s
(1,2,....n}

Low-degree algorithm: for some functions, a polynomial number of examples
required to approximate the “low” Fourier coefficients [1]

[1] Linial, N., Mansour, Y. and Nisan, N., 1993. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM (JACM), 40(3), pp.607-620.
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A PUF can be represented by a Boolean function.
But, do we reflect some important characteristics of that, e.g.,
being noisy, biased, etc., in this model?

37



Classification Noise

-----

Rese ar Ch ‘ FLORIDA

a;
— -~

en S / AN ’
= /< al-},<q'
, \ / i,4
, \ V2 \

a;,

c[l]= c[2]1=1 c[1] =

Arbiter

0/1

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2015, August. Why attackers win: on the learnability of XOR arbiter PUFs. In International

Conference on Trust and Trustworthy Computing (pp. 22-39). Springer.
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Q, 0/1
—~—— ~—— -
en N L/ .
= ,< 05 <, Arbiter
S\ 2 i,4
AR L7 N
a;,
c[l]= c[21=1 c[i] =
C=C,...C
| Teur '

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2015, August. Why attackers win: on the learnability of XOR arbiter PUFs. In International
Conference on Trust and Trustworthy Computing (pp. 22-39). Springer.
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Q. 0/1
N Te ’/ B
en X o, ;<Q Arbiter
N / i{4
" ¢
a;,
c[l]= c[21=1 c[i] =
C=C;...C, r=0
| Teur '

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2015, August. Why attackers win: on the learnability of XOR arbiter PUFs. In International
Conference on Trust and Trustworthy Computing (pp. 22-39). Springer.
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| Teur ‘

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2015, August. Why attackers win: on the learnability of XOR arbiter PUFs. In International
Conference on Trust and Trustworthy Computing (pp. 22-39). Springer.
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en N L/ .
= ,< 05 <, Arbiter
S\ 2 i,4
AR L7 N
a;,
c[l]= c[21=1 c[i] =
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" PUF .

[1] Ganji, F., Tajik, S. and Seifert, J.P., 2015, August. Why attackers win: on the learnability of XOR arbiter PUFs. In International
Conference on Trust and Trustworthy Computing (pp. 22-39). Springer.
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0/1

Arbiter

7
[1] Ganji, F., S.Tajik, and J.-P.Seifert. 2018, A Fourier analysis based attack against physically unclonable functions. In Intl. Conf. on
Financial Crypto. and Data Security. Springer.

[2] Maes, R., 2013, August. An accurate probabilistic reliability model for silicon PUFs. In International Workshop on Cryptographic
Hardware and Embedded Systems (pp. 73-89). Springer.
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e Some examples A
 The effect of the routing

 Having not sufficient deviation in the
manufacturing process variations from one
instance to another " M i

e Aging

« What is the impact of these? More biased :

responses. >
o {1 {2 .|| s

f(5)

 Under the noisy conditions: the approximated I
Fourier coefficients are attenuated, and a
polynomial increase in the number of example [1] -
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e Some examples A
 The effect of the routing

 Having not sufficient deviation in the
manufacturing process variations from one
instance to another " M i

e Aging

« What is the impact of these? More biased :

responses. i
o {1 {2 .|| s

f(5)

 Under the noisy conditions: the approximated I
Fourier coefficients are attenuated, and a
polynomial increase in the number of example [1] -

[1] Bshouty, N.H., Jackson, J.C. and Tamon, C., 2003. Uniform-distribution attribute noise learnability. Information and
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Fourier-based attacks are still feasible!
BUT
To prove the security against ML attacks, should we rely on the
infeasibility of some ML attacks?!
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* Ingredient:
e Controlling mechanisms,
* Non-linearity,
 Adding the noise
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* Ingredient: %ﬁ "!l I
e Controlling mechanisms, |
* Non-linearity, —
 Adding the noise :@7

What to do to stop the attacker? FyvCo | UF

Establishment of

Model of the PUF [> S pmﬂ':,ﬁ',?aﬂ at‘ime
functionality representation algorithm

.
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* Ingredient:
e Controlling mechanisms, . -

* Non-linearity,
 Adding the noise

What to do to stop the attacker? FyCo | UF

Establishment of
a proper
representation

Finding a
polynomial time
algorithm

Model of the PUF
functionality

»

.
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* Ingredient:
e Controlling mechanisms,
* Non-linearity,
 Adding the noise

Model of the PUF [> Eswg':f;';g‘;"t of pmyF.:?,ﬁ','.]aﬂ time
functionality representation algorithm

. /

At least, known
attacks are
ineffective
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* Ingredient:
e Controlling mechanisms,
* Non-linearity,
 Adding the noise

Model of the PUF [> Eswg':f;';g‘;"t of pmyF.:?,ﬁ':.]aﬂ time
functionality representation algorithm

. /

Are you sure that it is

secure now?
At least, known

attacks are
ineffective
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What to do to stop the attacker?
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* Ingredient:
e Controlling mechanisms,
* Non-linearity,
 Adding the noise

Model of the PUF [> Eswg':,i';g'eer"t of pmyF.:?,ﬁ':.]aﬂ time
functionality representation algorithm

. J

Are you sure that it is

secure now?
At least, known

attacks are
ineffective

But, it can be attacked
one way or another.

42
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 If we are given a set of CRPs, how to

proceed?
) Find the mo.st appropriate (j{am\ \l.rluuurug F{ilm .\311\:1l i{jmqqulc 15 ‘:;‘LH‘- Odel] :Mu‘A(:;‘;I\‘;;t'{\llt‘:l;ltl
representation ptlmlzatlolll feep Algorithms -llgfﬁ:%t Spec ulﬂ
: . . : hastic T Inference s @ Optima
» Find the most efficient algorithm 1 dStOCvar%iEm? ks ea nl
to learn that representation , %onvouuléé’fﬁ“ —d \_ |
S eovernce Anal Prediction
* Be careful about what you FO(”]“K NN%EKQF lgsd FSE,§§?IZnGau;>1§3 via®
Sial an 15 ~ models USINg = Samplir
conclude ;-) B Date euratmg;?dm S

Source: https://blogs.mathworks.com/loren/2016/08/08/text-
mining-machine-learning-research-papers-with-matlab/
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e Development of a new benchmarking
system and Security assessment tools and 7 e e
metrics
PUFmeter

-
* BOOIean and Fou rier analyses A Property Testing Tool for Assessing the Robustness of Physically
. Unclonable Functions to Machine Learning Attacks
 Property testing
! Florida Institute for Cybersecurity Rescarch 601 Gale Lemerand Dr., Gainesville, FL 32611 USA (e-mail: fzanji @ ufl edu, dforte@cce.ufledu )
=Security in Telecommunications, Technische Universitiit Berlin, Emst-Reuter-Plaz 7, Berlin 10587 Germany (e-mail: Jean-Pierre Seifent @ external telekom.de)

 Metrics, e.g., the average sensitivity

This material is based upon work supported by the National Science Foundation, CISE Community Research Infrastructure (CRI) Program
under grant agreement No. 1513239, The authors acknowledge the effort made by Dr. Shahin Tajik, who helps with the implementation of

e Infeasibility of PAC learning and its
conseq uences ABSTRACT As PUFs become ubiquitous for commercial products (e.g., FPGAs from Xilinx, Altera,

and Microsemi), attacks against these primitives are evolving toward more omnipresent and even advanced

Y N o p o Iy n o m ia I _s ize d re p rese n tati o n Of a techniques. Machine learning (ML) attacks, among other non-invasive attacks, are proven to be feasible and

cost-effective in the real-world. However, for PUF designers, it still remains an open question whether their

FATEMEH GANJI', DOMENIC FORTE', AND JEAN-PIERRE SEIFERT.?

countermeasures, or even new designs, are resistant lo these lypes of altacks. Although standard metrics

- -
fu nctlon, andlor ex‘stence Of no for estimating PUF quality exist, the most common approaches for measuring resistance to ML attacks

are empirical. This paper introduces PUFmeter, a new publicly available toolbox consisting of in-house

po Iy n o m ia I ti m e a I g o ri t h m to Iea rn a ilre\'elgped zllgorilhms.' tu ‘provide. a l?ltnl bals?is for lfle robuslness‘ u‘ssessmenl of l.)UFs aw,ain,sl. ML‘ z{lluck_s:.
0 this end, new metrics and notions are reintroduced by PUFmeter to PUF designe manufacturers.
H H Furthermore, to prepare the PUF input-output pairs adequately before conducting g sis, PUFmeter
ta rg et CO n ce pt O r Its ass O c I ated involves modules that outp:n the minimum number of mcasurcmctnt n:pcti[ions a: bound on the
re p rese n tati o n noise level affecting the PUF responses.
INDEX TERMS Physically Unclonable Functions, PUF Circuit Desigg
"= = ] L] Testine.
 Empirical algorithms may still be useful!

e Generalization of the results of this
study to other PUFs

44 SSCT ‘ -I.E
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A list of related work

 Pure, empirical machine learning attacks

1. Ruhrmair, U., Sehnke, F., Solter, J., Dror, G., Devadas, S. and Schmidhuber, J., 2010, October. Modeling attacks on physical unclonable
functions. In Proceedings of the 17th ACM conference on Computer and communications security (pp. 237-249). ACM.
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 Hybrid attacks
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 Mathematical approaches and cryptanalysis

6. Delvaux, J. and Verbauwhede, ., 2013, June. Side channel modeling attacks on 65nm arbiter PUFs exploiting CMOS device noise. In
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Are PUFs Tamper-evident?

 PUFs are believed to be tamper-evident against invasive attacks!

« Being tamper-evident against fully-invasive attacks have been experimentally
verified for optical and coating PUFs.

« Unfortunately, for Intrinsic PUFs, limited information on tamper-evidence is
available in the literature.

« mechanical stress from depackaging and substrate thinning have negligible effects
on the absolute and relative frequencies of ring-oscillators [14]

« PUF developers do their best to mitigate the noisy responses of the PUF by
different error correction techniques.

- ssct| T
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Optical Attacks

* Access to the surface of the chip without
creating contacts with internal wires

« Optical interactions with transistors using
known Failure Analysis (FA) tools

 Normally does not damage the system

 May or may not leave tamper evidence

[1] Schldsser, A., Nedospasov, D., Kramer, J., Orlic, S., & Seifert, J.
P. (2012, September). Simple photonic emission analysis of AES.
In International Workshop on Cryptographic Hardware and
Embedded Systems (pp. 41-57). Springer, Berlin, Heidelberg.
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* Frontside: Multiple interconnect layers obstruct the optical path to transistor

devices
o Backside: Active devices are directlv accessible
0 I paSSivation
v A O S
iz N, ] Tz metalization layer
RSB B BB B "" tran5|stors

bulk silicon

[1] Boit, Christian, and Philipp Scholz. "IC Debug and Fault Isolation for an Age of IoE and High Data Rates—A Vision."
IEEE Transactions on Components, Packaging and Manufacturing Technology 8.5 (2018): 719-724.
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* Photon Emission

e Laser Stimulation
 Laser Fault Injection
* Optical Probing

[1] Boit, Christian, and Philipp Scholz. "IC
Debug and Fault Isolation for an Age of
loE and High Data Rates—A Vision."
IEEE Transactions on Components,
Packaging and Manufacturing Technology
8.5 (2018): 719-724.

Nanoscale Debug & Diagnosis | TU Berlin
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1st scenario:

e PUF implementations are part of the
user design and used during runtime

@ Assumption: Access to the challenges
and the responses are available

2nd scenario:

o PUF implementations are used
during configuration to either
decrypt the bitstream or authenticate
the device to a RoT

© Assumption: No access to the
challenges and the responses

[1] Tajik, Shahin. On the physical security of physically
unclonable functions. Springer, 2018.

Photonic Emission Analysis

Laser Fault Injection

51
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Upper PUF Chain
: Lower'PUF Cha__in_

Challenge =1

LE containing
one stage

Challenge =0

10 LEs msude LAB

[1] Tajik et al. Emission Analysis of Hardware Implementations. DSD 2014: pp. 528-534
[2] Tajik et al. Physical Characterization of Arbiter PUFs. CHES 2014: pp. 493-509
[3] Tajik et al. Photonic Side Channel Analysis of Arbiter PUFs. Journal of Cryptology, 2017
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Measuring timing differences at the end of the
chain on both paths

No response is needed! w W
Characterization of the PUF with n+1 en
challenge: 1 reference challenge and n h
challenge with hamming distance one di i
E.g.
C(0) = 0000...00 >> Reference own
C(1) = 1000...00 >> &1 = +10 ps = Pk
1200 - "7'2(5
C(2) =0100...00 >> 62 = +185 PS . 't'// %é "__ggilslzragnefii
C(3) = 0010...00 >> 33 =-16 ps 5 " LE I
E soo-. :'Z : ,//&i
C(x) = 1110...00 >> +179 ps § Il x;
measured value = +175 ps . e T
o- AT :"‘ : ’.\ e / 4B '.' & b < : '", A,
4'EFS(I?)CTime Bin
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Measuring timing differences at the end of the

chain on both paths ™ :ﬁ
No response is needed! W W
Characterization of the PUF with n+1 en @
challenge: 1 reference challenge and n h
challenge with hamming distance one di i
E.g.
C(0) = 0000...00 >> Reference |
— - 1400 Bt wns Challenge A
C(1) =1000...00 >> 81 =+10 ps . *ﬁ Gaussian fit
C(2) = 0100...00 >> 52 = +185 ps N gé SCralenge 8
C(3) = 0010...00 >> 33 =-16 ps 5 " LE e
E soo-‘ "Z A A B ?&
C(x) = 1110...00 >> +179 ps g @/ {1H A
measured value = +175 ps . 1 I
1 o 1 BT
Linear increase in the required challenges with the number b L e
of PUFs in an XOR arbiter PUF! TDC Time Bin

53



Laser Fault Attack on XOR and RO PUF [1] C
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e XOR arbiter PUF:

 Simplifying ML attacks by
deactivating all Arbiter chains
except one!

* |terating the same approach until
all Arbiter PUFs are learnt!

RO PUF:

 Reducing the Entropy of PUF by
deactivating several ROs!

[1] Shahin Tajik, Heiko Lohrke, Fatemeh Ganiji, Jean-Pierre Seifert, Christian Boit: Laser Fault Attack on Physically
Unclonable Functions. FDTC 2015: pp. 85-96
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e Two obstacles for the attacker

 How can the SRAM be read when no electrical access to the SRAM is
available from the outside?

e How can the CRP behavior of one PUF be digitally and physically
cloned on another device?
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Laser Stimulation

+
Laser VDD (+)

Current

GND (-) Amplifier

Power Supply

@ The chip is scanned with
a laser beam with either
thermal or photoeletric
interaction (TLS/PLS)
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Seebeck Generator

IC backside Laser beam

© The laser beam generates a
Seebeck voltage (TLS) by
creating a temperature gradient
across dissimilar materials




Thermal Laser Stimulation (TLS) of SRAM Cells F¥
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3 1 b C'j m
]

—e ¢ ® —

- .
T ma

® The Seebeck voltage changes current flow
through the “off” transistors >> leakage
current increases

® Reaction of different areas of SRAM cells to
TLS, depending on the stored value
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Reading SRAM of ATMega328P = B

Reading SRAM using Photon Emission
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Cloning SRAMPUF  Fw
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0 1 1 01 1 1 O
- s " " 2 »

10 ym
e Trenching silicon with FIB 0, 00,0, 00 H IH iﬂ
10111001 | |
i RemOVing CO ntaCtS or trimming (a) Target emissions (b) Target fingerprint
transistors by FIB to change their B B "ol BEE
power-up states 3N BE | H BER B
(c) Initial clone fingerprint (d) Final clone fingerprint

interconnect layers ’

g ;

B { i] |
[1] Helfmeier, C., Boit, C., Nedospasov, D., & Seifert, J. P. (2013, ﬁB trench trench to STI |
June). Cloning physically unclonable functions. In 2013 IEEE polished device backside/| FIB CE removing contact |
International Symposium on Hardware-Oriented Security and FIB CE altering
Trust (HOST) (pp. 1-6). IEEE. dynamic characteristic
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Hard PUFs in Commercial FPGAs
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Hard PUF Examples

SRAM PUF for
Microsemi SmartFusion2 and IGLOO2 Models

&

Microsemi.

m@- SRAM PUF for Intel/Altera Stratix 10

now part of Intel

& XILINX RO PUF for Xilinx Ultrascale+
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Why Vendors Trust PUFs? FyCo | UF
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« The main assumption of attacks against PUFs: Access to the Challenge and
Responses is available!

« Since the implemented soft or hard PUFs inside of FPGAs are controlled PUFs,
where a non-invasive electrical access to the challenges and responses of the
PUFs is restricted by either physical or algorithmic countermeasures, most of the
reported modeling and semi-invasive attacks are ineffective.

* In this case the unprocessed challenges can be transmitted with the first stage
boot loader to the FPGA.

« The response of the PUF will also be generated and processed inside the device
and cannot be observed in a non-invasive way.
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Security of FPGAs
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Bitstream: configuration data
containing Intellectual Property (IP)
and secrets for reconfigurable
hardware

The bitstream can be loaded in the
field (adversarial environment)

Threats: cloning, reverse-engineer,
tampering or spoofing

FPGA / SoC

circuit

ASIC
config
circuit

Flash-based
FPGA / SoC

Remote
Server

01101010
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PUF-based Bitstream Configuration
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Loading the decryption key in
plaintext into FPGA through JTAG

Storing the red key in Battery Backed
RAM (battery needed) or eFuses (no
battery)

Loading the encrypted bitstream in the
field
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Application
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Encrypted
application
with red key

Secret Red Key
over JTAG

BBRAM or eFuse

Secret
Red Key

Decrypted
Bitstream

Encrypted
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PUF-based Bitstream Configuration Co|UF
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« Loading the decryption key (Red) in
plaintext into FPGA through JTAG

* Encrypting the Red Key with PUF
responses to generate Black Key

« Storing Black Key and PUF
configuration in NVM.

« Tampering Black Key by semi-invasive
attacks does not divulge the red key

[1] Peterson, E.: White Paper WP468: Leveraging Asymmetric
Authentication to En- hance Security-Critical Applications Using
Zyng-7000 All Programmable SoCs. Xilinx, Inc. San Jose, CA (2015)
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Optical Probing [1] FyCo |UF
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DUT
Light —>
—> b
Source i =
Beam Objective &
Splitter Lens =
Detector | <+— /
Active Area Backside Frontside

« Changes in the absorption coefficient and the refractive index of device in active area by
electrical field and current.

« Electro-Optical Probing (EOP) or Laser Voltage Probing (LVP): Optical beam intensity
altered by voltage/current —> probing of electrical signals on the node

« Electro-Optical Frequency Mapping (EOFM) or Laser Voltage Imaging (LVI): Feeding
the reflected signal to a detector with a narrow band frequency filter while scanning the
laser—> detecting node switching with this frequency

[1] Lohrke, H., Tajik, S., Boit, C., & Seifert, J. P. (2016, August). No place to hide: contactless probing of secret data on FPGAs. In
International Conference on Cryptographic Hardware and Embedded Systems (pp. 147-167). Springer, Berlin, Heidelberg.
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Key Extraction usingb®i - F¥
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Key ExtractionusingL,VP  F¥
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Key Extraction using LVP FyC
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Side-Channel Analysis
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EM Side-Channel Analysis of RO PUFs [1]

Measuring the oscillation frequency of
ROs by electromagnetic radiations

o «— RO_1
 Assumption: Attacker has access to

< 0.6

% 05 b RO 2
CRPs o4 —
= 03
§ 02
0.1
0.0 : - - : .
1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e4+ 08 1.020e+ 08 1.025e+ 08

frequency [Hz]

RO 2
= <) RO 3

g o2
0.1

0»0 N I T T T 1
1.000e+08 1.005e+08 1.010e+08 1.0150+08 1.020e+08 1.025e+08
frequency [H2]

[1] Merli, Dominik, et al. "Side-channel analysis of PUFs and fuzzy extractors." International Conference on Trust and Trustworthy
Computing. Springer, Berlin, Heidelberg, 2011.
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Hybrid Attacks (SCA + ML) [1] SV

Rese ar Ch ‘ FLORIDA

« Combination of ML techniques with 2007
SCA: Breaking up to 16 XOR arbiter 1%01'E
PUF 1601 S 89 orving four e |
_ 140§
* Power side channel — 120}
<
« Power consumption peaks when the g 100/
flip-flops gives out 1 o 80f
. . 60
« Timing side channel ol
201
0 1 . ! : . .
20 20.05 20.1 20.15 20.2 20.25 20.3 20.35

Time (ns)

[1] RUhrmair, Ulrich, et al. "Efficient power and timing side channels for physical unclonable functions." International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2014.
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o Several protocol-level countermeasures against ML and physical attacks have
been proposed, however, almost all of them have been broken!

* Very good security analysis of PUF protocols:

A Survey on Lightweight Entity Authentication with Strong PUFs

JEROEN DELVAUX, KU Leuven and Shanghai Jiao Tong University and iMinds
ROEL PEETERS, KU Leuven and iMinds

DAWU GU, Shanghai Jiao Tong University

INGRID VERBAUWHEDE, KU Leuven and iMinds

Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations of an Integrated
Circuit (IC). Their input-output behavior serves as a unique IC “fingerprint.” Therefore, they have been
envisioned as an IC authentication mechanism, in particular the subclass of so-called strong PUFs. The
protocol proposals are typically accompanied with two PUF promises: lightweight and an increased resistance
against physical attacks. In this work, we review 19 proposals in chronological order: from the original strong
PUF proposal (2001) to the more complicated noise bifurcation and system of PUF proposals (2014). The
assessment is aided by a unified notation and a transparent framework of PUF protocol requirements.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]|: Smart-
cards; E.3 [Data Encryption]: Code Breaking; K.6.5 [Security and Protection]: Authentication

General Terms: Algorithms, Security
Additional Key Words and Phrases: Physically unclonable function, entity authentication, lightweight

ACM Reference Format:

Jeroen Delvaux, Roel Peeters, Dawu Gu, and Ingrid Verbauwhede. 2015. A survey on lightweight entity
authentication with strong PUFs. ACM Comput. Surv. 48, 2, Article 26 (October 2015), 42 pages.

DOI: http://dx.doi.org/10.1145/2818186
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Machine-Learning Attacks on PolyPUFs, OB-PUFs,
RPUFs, LHS-PUFs, and PUF-FSMs

Jeroen Delvaux

Abstract— A physically unclonable function (PUF) is a circuit
of which the input-output behavior is designed to be sensitive to
the random variations of its manufacturing process. This buildi

TABLE I
SYMBOLS USED TO DENOTE CONSTANTS AND VARIABLES

block hence facilitates the authentication of any given device in a
population of identically laid-out silicon chips, similar to the bio-
metric authentication of a human. The focus and novelty of this
paper is the development of efficient impersonation attacks on the
following five Arbiter PUF-based authentication protocols: 1) the
so-called Poly PUF protocol of Konigsmark et al. as published
in the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS in 2016; 2) the so-called
OB-PUF protocol of Gao e al. as presented at the IEEE
Conference PerCom 2016; 3) the so-called RPUF protocol of
Ye et al. as presented at the IEEE Conference AsianHOST 2016;
4) the so-called LHS-PUF protocol of Idriss and Bayoumi as
presented at the IEEE Conference RFID-TA 2017; and 5) the
so-called PUF-FSM protocol of Gao et al. as published in
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS in 2018. The common
flaw of all five designs is that the use of lightweight obfuscation
logic provides insufficient protection against machine-learning
attacks.

Constant Outcomes of random vanables A, 3,C, - -
Scalar  a.4.74,-- abe.---
Vector o, 3,7, a,b,ec,
Mauix A, B,T,--- A, B.C,--

a PUF is highly constrained in its use of non-linear operations
and is therefore prone to machine learning. Stated otherwise,
the level of diffusion and confusion that can be achieved by a
PUF is no match for a properly designed cipher.

Delvaux [4, Ch. 5] analyzed the security and practicality
of 21 PUF-based authentication protocols, thereby revealing
numerous problems to the extent that only six candidates
survive. In parallel, Becker [5], [6] and Tobisch and Becker [7]
pushed the boundaries of machine-learning attacks on
PUF-based protocols. The previous analyses, however, are
not up-to-date with proposals beyond the year 2014. In this
work, we illustrate that the research field of developing new
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» Restricting the feeding of arbitrary challenges to the PUF.

* Preventing repeatable feeding of the same challenge to prevent side-channel
leakage.

146 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.2, NO.3, JULY-SEPTEMBER 2016

A Lockdown Technique to Prevent Machine
Learning on PUFs for Lightweight Authentication

Meng-Day (Mandel) Yu, Member, IEEE, Matthias Hiller, Jeroen Delvaux,
Richard Sowell, Srinivas Devadas, Fellow, IEEE, and Ingrid Verbauwhede, Fellow, IEEE

Abstract—We present a lightweight PUF-based authentication approach that is practical in settings where a server authenticates a
device, and for use cases where the number of authentications is limited over a device’s lifetime. Our scheme uses a server-managed
challenge/response pair (CRP) lockdown protocol: unlike prior approaches, an adaptive chosen-challenge adversary with machine
learning capabilities cannot obtain new CRPs without the server's implicit permission. The adversary is faced with the problem of
deriving a PUF model with a limited amount of machine learning training data. Our system-level approach allows a so-called strong
PUF to be used for lightweight authentication in a manner that is heuristically secure against today’s best machine learning methods
through a worst-case CRP exposure algorithmic validation. We also present a degenerate instantiation using a weak PUF that is
secure against computationally unrestricted adversaries, which includes any learning adversary, for practical device lifetimes and
read-out rates. We validate our approach using silicon PUF data, and demonstrate the feasibility of supporting 10, 1,000, and 1M
authentications, including practical configurations that are not learnable with polynomial resources, e.g., the number of CRPs and the
attack runtime, using recent results based on the probably-approximately-correct (PAC) complexity-theoretic framework.

Index Terms—Physical unclonable function, authentication, machine learning, heuristic security, computationally unrestricted adversary,
probably approximately correct (PAC) learning
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Lockdown Protocol 1
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Due to the lockdown, the adversary
cannot issue a not-yet- seen packet c||r1
(not-yet-released by the server) and get
the corresponding returning response
packet r2’; as a result, the challenges
can be deterministically generated, e.qg.,
using a counter. Every authentication is
unique since the challenge is non-
repeating, based on a server-side
counter.

WPUF: Weak PUF like SRAM or RO
PUF
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Device 7

Server
Enrollment (1 x)

id,
OTP-S: id « id; ——"_ id; « SerialNumber()
«—— (ry,r2);; with j € [1,d]

Authentication (dx)
init
(—
id
Abort if Vi : id # id;
C < ]z
Ji < Ji+1
Abort if j; > d
(r1,r2) = (r1,12)i5
cljr with j = j;
~ ~ (—
r1||Te + WPUF(c)
Abort if FHD(Fl,rl) >T To
e, ~
Abort if FHD(r2,r5) > 7




Lockdown Protocol 2
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During an authentication event, the server
obtains a device identifier id packet which now
also includes a challenge cp from the device;
the device-side challenge is to allow a
challenge exchange, so neither the device nor
the server can unilaterally determine all the
bits of <c>.

It prevent repeated measurements to, for
example, obtain photonic information

SPUF: Strong PUF like XOR Arbiter PUF

Server keeps a simulated SPUF (In
enrollment phase, individual chains of an XOR
arbiter PUF can be modelled by giving access
to response of all chains. The simulated
model will be stored in the database)
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Device ¢ Server
Enrollment (1 x)

id;

OTP-S: id « id; —— 1id; < SerialNumber()
< Train model S/Pm:z
c;, +— 0
Authentication (d x)
it
cp < TRNG() idlcp
Abort if V7 : id # id;
Cg < C;
c;+—c;+1

Abort if c; > d
(c) + PRNG(c)
with ¢ = cgl[cp
cslri ry|jrs < SPUF;((c))
(c) « PRNG(c) -
with ¢ = cgl|cp
F1|[F2 + SPUF((c))
Abort if FHD(r r) > 7 To
" Abortif FHD(Fa,12) > 7

s=ct| T
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Thank you

78



