
Verification of Hardware

IP Security and Trust

Prabhat Mishra
Professor

Computer and Information Science and Engineering

University of Florida, USA

Outline

2

 Introduction

 Design for Security

 IP Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Conclusion

SoC Design using Intellectual Property (IP) Blocks

Long and globally distributed supply chain of hardware IPs makes

SoC design increasingly vulnerable to diverse trust/integrity issues.

Prabhat Mishra, Swarup Bhunia and Mark Tehranipoor (Editors), Hardware
IP Security and Trust, ISBN: 978-3-319-49024-3, Springer, 2017.

Trust Me!

4

Farimah Farahmandi, Yuanwen Huang and Prabhat Mishra, System-on-Chip Security
Validation and Verification, Springer, ISBN: 978-3-030-30596-3, 2019.

Electronics Supply Chain Security

Untrusted IP

Vendor & Sys.

Integrator

Untrusted Foundry & Assembly In the Field & Recycling

Maximum Flexibility Minimum Flexibility

What are the challenges?

Hardware
Trojan Attacks!

Taxonomy of hardware IP security issues

© VLSI Design & Embedded Systems Conference 6

IP Tools
Std.

Cells Models

DesignSpecifications Fab Interface Mask Fab

Wafer

Probe

Dice and

Package

Package

Test

Deploy

and

Monitor

Trusted

Either

Untrusted

Wafer

HW Trojan Threats

*http://www.darpa.mil/MTO/solicitations/baa07-24/index.html

Modern SoC Design and Manufacturing Flow*

Most vulnerable stages!

© VLSI Design & Embedded Systems Conference 7

HW Trojan Examples/Models

Comb Trojan model Seq. Trojan Model

Comb Trojan Example Seq Trojan Example

System level view

MOLES*: Info Leakage Trojan

*Lin et al, ICCAD 2009

© VLSI Design & Embedded Systems Conference 8

HW Trojan: in the News

© VLSI Design & Embedded Systems Conference 9

Why is Trojan Detection Challenging?

• Trojans are stealthy

− Conventional ATPG is not effective

• Inordinately large number of possible Trojan instances

− Combinatorial dependence on number of circuit nodes

− 8-bit ALU (c880) with 451 nodes → ~1011 possible 4-input Trojans!

• Sequential Trojans extremely hard to detect

© VLSI Design & Embedded Systems Conference 10

Outline

11

 Introduction

 Design for Security

 Logic locking, obfuscation, watermarking, PUF, …

 IP Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Conclusion

HW Obfuscation for IP Protection

● Global Hardware Piracy estimated at $1B/day*

● Causes loss of market share, revenue and reputation

● Affects all parties (IP vendors, IC design houses and System

Designers)

case (case_select)

3’d0 : out = 4’d1;

3’d3 : out = 4’d4;

3’d5: out = 4’d6;

3’d7: out = 4’d8;

default : out =

4’b0;

endcase

Watermark Example

© VLSI Design & Embedded Systems Conference 12

Obfuscation-based IP Protection

 Cryptography-based:
 HDL source-code is encrypted [Cadence ’05, Xilinx]
 Licensed customer with correct key can de-crypt and use
 Require proprietary design platform support
 Unacceptable to many SoC design-houses

 String-processing based [Semantic]
 Removes comments
 Re-names internal wires and registers
 Affects readability and comprehensibility

 Code transformation based [Brzozowski &
Yarmolik]

 Loop unrolling
 Parallel block => sequential block
 Flattening register banks

© VLSI Design & Embedded Systems Conference 13

Security Through Key-based Obfuscation

P0
P1

P2
Start

S1

S0 S2 S6

S7S8

S3

S4 0

Obfuscated Mode

(Incorrect function)
Normal Mode

(Correct function)

R2

R
3

R
6

R5

R
4

R
1

M2

n2
n΄2

g2

State Elements (SE)

In
s

e
rte

d
 F

S
M

f2

M1

n1
n΄1

g1

f1

M3

n3
n΄3

g3

f3

P
ri

m
a

ry
 I
n

p
u

ts

P
rim

a
ry

 O
u

tp
u

ts

Inserted SE

Combinational Logic

Modification

Cell

S3S4

P3

P4

P5

S0 S1 TkT1 T2 Sn

Original SE

Enabling Key: {P0, P1, P2}

Basic Idea:

● Obfuscate the design

functionally and

structurally

● Achieved by modifying

the state transition function

● Normal behavior is

enabled only upon

application of a key!

Prevents illegal usage of IPs!
Chakraborty & Bhunia, ICCAD 2008

Chakraborty & Bhunia, TCAD 2009

© VLSI Design & Embedded Systems Conference - 2015 14

Design for Security

 IP Specific (Network-on-Chip) Protection

 Anonymous Routing

 Trust-aware Routing

 Authenticated Encryption

 Detection and Localization of DoS

15

S. Charles, Y. Lyu, P. Mishra, Real-time Detection and Localization of DoS Attacks in NoC
based SoCs, Design Automation and Test in Europe (DATE), Florence, Italy, 2019.

Outline

16

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Conclusion

Validation of System-on-Chip (SoC) Designs

17

Implementation
(System/RTL Level)

Each Copy of

Integrated Circuit
Integrated Circuit

Pre-Silicon

Verification

Post-Silicon

Validation
Manufacturing

Testing

Fabrication

M. Chen, X. Qin, H. Koo and P. Mishra, System-Level Validation: High-Level Modeling
and Directed Test Generation Techniques, ISBN: 978-1-4614-1358-5, Springer, 2012.

Post-Silicon Validation

Implementation

(RTL/Gate Level)

Manufacturing

CUD

Input

Tests

Signal

Output

Pre-Silicon

Validation

Post-Silicon

Validation

Debug

LOGIC
Trace

Buffer

Signal

Selection

18

Prabhat Mishra and Farimah Farahmandi (Editors), Post-Silicon
Validation and Debug, ISBN: 978-3-319-98115-4, Springer, 2018.

Outline

19

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Conclusion

Simulation-based Validation

Simulation

(DUT)
Pass /

FailTestTest
Test

Tests
Test

Generation

Coverage

Analysis

Simulation-based validation is widely used

 Uses billions to trillions of random tests

 Still no guarantee of covering important scenarios

© VLSI Design & Embedded Systems Conference - 2015 20

Threat Model

21

Trojan taxonomy from www.trust-hub.org
Trojan detectable by our approach is highlighted

A. Ahmed, F. Farahmandi, Y. Iskander and P. Mishra, Scalable Hardware Trojan
Activation by Interleaving Concrete Simulation and Symbolic Execution, ITC, 2018.

Trust Metrics and Benchmarks
 Functional Validation

 Code coverage (statement / branch / path)

 FSM coverage (states and transitions)

 Property coverage (functional scenarios)

 Parametric Validation

 Power / thermal violations

 Real-time violations

 Rare-node / rare-scenario activations

 Static and Dynamic Benchmarks

Jonathan Cruz, Prabhat Mishra and Swarup Bhunia, The Metric Matters: How to
Measure Trust, Design Automation Conference (DAC), 2019.

J. Cruz, Y. Huang, P. Mishra, S. Bhunia, An Automated Configurable Trojan Insertion
Framework for Dynamic Trust Benchmarks, Design Automation & Test in Europe 2018.

Directed Test Generation

B

A

B

A

Random Test Directed Test

 Significantly less number of directed tests can achieve

same coverage goal than random tests

 Need for automated generation of directed tests

23

Y. Lyu, X. Qin, M. Chen and P. Mishra, Directed Test Generation for Validation of
Cache Coherence Protocols, IEEE Transactions on CAD (TCAD), February 2018.

Test Generation using Model Checking

Cycle Opcode Dest Src1 Src2

1 NOP

2 ADD R3 R1 R2

3 SUB R4 R3 R2

Model Checker

assert G (ID.stall != 1) Processor Model

Example: Generate a directed test to stall a decode unit (ID)

Counter example (directed test)

Negated Property
(intended behavior) Design

Test = ModelCheck (Design & ~Property)
Problem: Test generation is time consuming and may not be

possible when complex design and properties are involved

Solution: Exploit learning to reduce test generation complexity

Scalable Directed Test Generation

Test generation based on model checking

Concolic Testing – Interleaved concrete and

symbolic execution [Sen, CAV 2006]

Cycle Opcode Dest Src1 Src2

1 NOP

2 ADD R3 R1 R2

3 SUB R4 R3 R2

Model Checker

assert G (ID.stall != 1) Processor Model
Needs translation from HDL to

SMV  error prone

Cannot handle large designs,

needs abstraction  error prone

Desirable to verify the HDL directly!

Yangdi Lyu, Alif Ahmed and Prabhat Mishra, Automated Activation of Multiple Targets in RTL Models using
Concolic Testing, Design Automation and Test in Europe (DATE), Florence, Italy, March 25 - 29, 2019.

Scalable Directed Test Generation

(out,0) = 38

RTL design Simulation Trace

ConstraintsTest

Test Goal

Simulation

Constraint Solver

A. Ahmed, F. Farahmandi and P. Mishra, Directed Test Generation using Concolic
Testing of RTL Models, Design Automation and Test in Europe (DATE), 2018.

Concolic Testing

Combines concrete and symbolic execution

27

Start

Exit

Solve

Symbolically

Generate

Input
Simulate

Select

alt. path

CFG of P

b1 b1

b2 b2

b3 b3

b4 b4

b5 b5

Concolic Testing

Combines concrete and symbolic execution

28

Start

Exit

Solve

Symbolically

Generate

Input
Simulate

Select

alt. path

I1

b1 b1

b2 b2

b3 b3

b4 b4

b5 b5

Concolic Testing

Combines concrete and symbolic execution

29

Start

Exit

Solve

Symbolically

Generate

Input
Simulate

Select

alt. path

I1

b1 b1

b2 b2

b3 b3

b4 b4

b5 b5

Concolic Testing

Combines concrete and symbolic execution

30

Start

Exit

Solve

Symbolically

Generate

Input
Simulate

Select

alt. path

I1

b1

b2

b3

𝑐 = 𝑏1 ∧ 𝑏2 ∧ ¬𝑏3

Concolic Testing

Combines concrete and symbolic execution

31

Start

Exit

Solve

Symbolically

Generate

Input
Simulate

Select

alt. path

I2

b1 b1

b2 b2

b3 b3

b6 b6

b7 b7

𝑐 = 𝑏1 ∧ 𝑏2 ∧ ¬𝑏3

Assertion-based Validation

32

Coverage analysis for s9234

33

Coverage monitors are selected randomly

F. Farahmandi, R. Morad, A. Ziv, Z. Nevo and P. Mishra, Cost-Effective Analysis of Post-Silicon
Functional Coverage Events, Design Automation and Test in Europe (DATE), 392-397, 2017.

Coverage analysis for s9234

34

Coverage monitors are selected from hard-to-detect events

F. Farahmandi, R. Morad, A. Ziv, Z. Nevo and P. Mishra, Cost-Effective Analysis of Post-Silicon
Functional Coverage Events, Design Automation and Test in Europe (DATE), 392-397, 2017.

Outline

35

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Conclusion

HW Trojan Detection

Logic Testing Side-Channel Analysis

Pros ● Robust under process noise

● Effective for ultra-small Trojans

● Effective for large Trojans

● Easy to generate test vectors

Cons ● Difficult to generate test vectors

● Large Troj. detection challenging

● Vulnerable to process noise

● Ultra-small Troj. Det. challenging

Wolff et al, DATE 2008Chakraborty et al, CHES, 2010 Chakraborty et al, HOST 2008

© VLSI Design & Embedded Systems Conference
36

Y. Huang, S. Bhunia and P. Mishra, MERS: Statistical Test Generation for Side-Channel Analysis based Trojan
Detection, ACM Conference on Computer and Communications Security (CCS), pages 130-141, 2016.

Logic Testing for Trojan Detection

37

Original
Design
Circuit

Trojan
infected
Circuit

Inputs
(test vectors)

101101…101

Outputs

Outputs

Compare

111101……00000000101

111101……00100000101

Not effective:

(1) Test space (no way to cover all inputs and all circuit states)

(2) Trojan space (unknown locations, unknown triggers)

(3) Trojan is stealthy (rare triggering)

Side Channel Analysis (SCA) for Trojan Detection

3838

Original
Design
Circuit

Trojan
infected
Circuit

Inputs
(test vectors)

101101…101

Amp

Side Channel Signature (current)

Side Channel Signature

Not effective:

(1) Trojan is small and dormant (different of signature is small)

(2) Sensitivity (process noise and background switching)

Our Approach: Logic Testing + SCA

39

Original
Design
Circuit

Trojan
infected
Circuit

Amp

Side Channel Signature
(switching)

Side Channel Signature
(switching)

Statistical test generation
(Multiple Excitation of
Rare Switching, MERS)

High-quality tests

High-quality tests

Y. Huang, S. Bhunia, P. Mishra, Scalable Test Generation for Trojan Detection using
Side Channel Analysis, IEEE Trans. on Information Forensics & Security (TIFS), 2018.

Multiple Excitation of Rare Switching (MERS)

40

Trojan

Rare nodeNon-rare node

MERS: Test Reordering

41
Rare nodeNon-rare node

Before reordering:

Effect of Increased Total Switching

42

Total Switch also increases with N ====> Tests reordering

MERS: Test Reordering

43
Rare nodeNon-rare node

After reordering:

Effect of Weight Ratio (C)

44

Y. Huang, S. Bhunia P. Mishra, MERS: Statistical Test Generation for Side-Channel Analysis based
Trojan Detection, ACM Conf. on Computer and Communications Security (CCS), 2016.

Outline

45

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Property Checking of Unwanted Scenarios

 Equivalence Checking to Identify Threats

 Theorem Proving of Design Alternations

 Conclusion

Checking Non-functional Properties

Find a path that satisfies a specific property

46

Task1 at 0.5v

Task2 at 0.5V

Task1 at 0.9v

Task2 at 0.9v

X. Qin, W. Wang and P. Mishra, Temperature- and Energy-Constrained Scheduling in
Real-Time Multitasking Systems, IEEE Transactions on CAD (TCAD), 2012.

TCEC requirement can be written in CTL as:
EG ((T < Tmax ∧ E < Ebudget) U A.end)

 If the model checker does not support

“until”:
EF (isTSafe ∧ isESafe ∧ A.end)

 In UPPAAL’s property description

language:

Model Checking using UPPAL

© VLSI Design & Embedded Systems Conference - 2015

FSM Anomaly Detection

48

F. Farahmandi and P. Mishra, FSM Anomaly Detection using Formal Analysis, IEEE
International Conference on Computer Design (ICCD), 2017.

A. Nahiyan et al., Security-aware FSM Design Flow for Identifying and Mitigating
Vulnerabilities to Fault Attacks, IEEE Transactions on CAD (TCAD), 2018.

Outline

49

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Property Checking of Unwanted Scenarios

 Equivalence Checking to Identify Threats

 Theorem Proving of Design Alternations

 Conclusion

Equivalence Checking

Traditional Equivalence Checkers

Equivalence Checking using SAT Solvers

Does not work for industrial designs

unless the design structure (FSM) is

similar
50

Specification

Implementation

XOR
Inputs Output

Groebner Basis and Polynomials

Gate Level

Implementation

of Arithmetic

Circuit

Generate Polynomial Set (F)

Reduce

fSPEC w.r.t G
Arithmetic Circuit

Specification (fSPEC)

Represents

an Ideal I

Compute

Groebner

Basis (G)

Remainder = 0 ?

Equivalent

Yes

Not Equivalent

No

51
F. Farahmandi and P. Mishra, DATE 2016.

Groebner Basis

 Let K be a computable field

K[𝑥1, 𝑥2, … , 𝑥𝑛] be the polynomial ring in n variables

 Polynomial f ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] is written as
𝑓 = 𝑐1𝑀1 + 𝑐2𝑀2 +⋯+ 𝑐𝑑𝑀𝑑

 Ideal I is represented by

< 𝑓1, 𝑓2, … , 𝑓𝑠 >= { σ𝑖=1
𝑠 ℎ𝑖𝑓𝑖 : ℎ1, ℎ2, … , ℎ𝑠 ∈ 𝐾 𝑥1, 𝑥2, … , 𝑥𝑛 }

 F = {𝑓1, 𝑓2, … , 𝑓𝑠} is called generator or basis of ideal I

 Every arbitrary ideal other than {0} has a basis with

specific properties which is called Groebner basis

© VLSI Design & Embedded Systems Conference - 2015 52

Ideal Membership Algorithm

The set G Groebner basis of ideal I if and

only if

For all polynomial 𝑓 ∈ 𝑰 the remainder of reducing

𝑓 w.r.t polynomials of G is zero

Reduction is a sequential division of 𝑓 on set G

with respect to a specific order

Groebner Basis has to be computed

© VLSI Design & Embedded Systems Conference - 2015 53

Integer Polynomial of Logical Gates

𝑧 = 𝑁𝑂𝑇 𝑎 => 𝑓 = 𝑧 − 1 − 𝑎 = 𝟎

𝑧 = 𝐴𝑁𝐷 𝑎, 𝑏 => 𝑓 = 𝑧 − 𝑎. 𝑏 = 0

𝑧 = 𝑂𝑅 𝑎, 𝑏 => 𝑓 = 𝑧 − 𝑎 + 𝑏 − 𝑎. 𝑏 = 𝟎 𝑧 =
𝑋𝑂𝑅 𝑎, 𝑏 => 𝑓 = 𝑧 − 𝑎 + 𝑏 − 2. 𝑎. 𝑏 = 𝟎

 Every Boolean variable a can be consider as

 𝐚 ∈ 0,1 ⊂ 𝒁

 𝒂𝟐 = 𝒂

 Every logical gate can be modeled with an

integer polynomial

F. Farahmandi et al., Effective Combination of Algebraic Techniques and Decision Diagrams to

Formally Verify Large Arithmetic Circuits, ISVLSI 2014.

© VLSI Design & Embedded Systems Conference - 2015 54

Illustrative Example

Full Adder

A

B

Cin

S

Cout 𝒇𝒔𝒑𝒆𝒄 ≔ 𝟐 ∗ 𝑪𝒐𝒖𝒕 + 𝑺 − 𝑨 + 𝑩 + 𝑪𝒊𝒏 = 𝟎

Circuit’s Polynomials:
F = { W1 – (A+ B – 2*A*B) = 0,

W2 – (W1 * Cin) = 0,
W3 – (A*B) = 0,
S – (W1 +Cin – 2*W1*Cin) = 0,
Cout – (W2 + W3 - W2*W3) = 0 }

All circuit polynomials have relatively

prime leading terms  F = G

Cout > S > { W3> W2} > W1> {A> B> Cin}

© VLSI Design & Embedded Systems Conference - 2015 55

Illustrative Example: Reduction Step

 Sequential Division with following order:

 Cout S  W3  W2  W1  Cin A  B

 The dividend is

 𝒇𝒔𝒑𝒆𝒄 ≔ 𝟐 ∗ 𝑪𝒐𝒖𝒕 + 𝑺 − 𝑨 + 𝑩 + 𝑪𝒊𝒏 = 𝟎

 Steps:

 1: cancle Cout with 2*(Cout – (W2 + W3 - W2*W3))

Remainder = S -2*W2*W3+ 2*W3+ 2*W2 - A –B - Cin

 2: cancle S with 1*(S – (W1 +Cin – 2*W1*Cin))

 Remainder = -2*W2*W3+2*W3+ 2*W2+ – 2*W1*Cin+ W1 - A –B

 3: cancle W3 with (2-2W2) *(W3 – (A*B))

 Remainder = 2*W2+2*W2*A*B – 2*W1*Cin + W1+2*A*B- A –B

 4: cancle W2 with (2 + 2*A*B)*(W2 – (W1 * Cin))

Remainder = 2*A*B*C*W1+W1+ 2*A*B -A - B

 5: cancle W1 with (2*A*B*C+1) * (W1 – (A+ B – 2*A*B))

 Remainder =0 The design has correctly implemented the specification

© VLSI Design & Embedded Systems Conference - 2015 56

Automated Detection and Correction
Verification Test Generation Debugging

57

Gate-level

Combinational

Circuit

Specification
Polynomial

Remainder == 𝟎

Correct
Circuit

Buggy
Circuit

Simulate Tests

Find Faulty
Regions

Pattern
Construction

Detect/Correct

Bug

Find
assignments to

make
remainder non-

zero

Tests

Equivalence Checking

Yes No

Remainder

F. Farahmandi and P. Mishra, Automated Test Generation for Debugging Multiple Bugs
in Arithmetic Circuits, IEEE Transactions on Computers (TC), 68(2), 182-197, 2019.

Example (Correct Implementation)

 Consider a 2-bit Multiplier

 𝒇𝒔𝒑𝒆𝒄 ≔ 𝒁− 𝑨.𝑩

 Order: {𝒁𝟐, 𝒁𝟑} > {𝒁𝟏, 𝑹} >

 {𝒁𝟎, M, N, O} > {𝑨𝟏,𝑨𝟎, 𝑩𝟏, 𝑩𝟎}

 Verification Steps:

 𝑓𝑠𝑝𝑒𝑐 : 8. 𝑍3 + 4. 𝑍2 + 2. 𝑍1 + 𝑍0 − 4. 𝐴1. 𝐵1 − 2. 𝐴1. 𝐵0 − 2𝐴0𝐵1 − 𝐴0𝐵0

 Cancel 𝑍2and 𝑍3
 Step1: 4. 𝑅 + 4. 𝑂 + 2. 𝑍1 + 𝑍0 − 4. 𝐴1. 𝐵1 − 2. 𝐴1. 𝐵0 − 2𝐴0𝐵1 − 𝐴0𝐵0

 Cancel R and 𝑍1
 Step 2: 4. 𝑂 + 2.𝑀 + 2. 𝑁 + 𝑍0 − 4. 𝐴1. 𝐵1 − 2. 𝐴1. 𝐵0 − 2𝐴0𝐵1 − 𝐴0𝐵0

 Cancel 𝒁𝟎, M, N, O
 Step 3: (remainder): 0 58

Example (Buggy Implementation)

 Consider a buggy 2-bit Multiplier

 𝒇𝒔𝒑𝒆𝒄 ≔ 𝒁− 𝑨.𝑩

 𝒇𝒔𝒑𝒆𝒄 ≔ 𝟖.𝒁𝟑 + 𝟒. 𝒁𝟐 + 𝟐. 𝒁𝟏 + 𝒁𝟎 − (𝟐. 𝑨𝟏 + 𝑨𝟎). (𝟐. 𝑩𝟏 + 𝑩𝟎)

59

The remainder shows the
difference of functionality of

an OR gate and AND gate

Trojan Detection using Polynomials

60

Golden Netlist Implementation

Specification

polynomials S

Implementation

polynomials I

 Reduce Set S over set I to obtain Remainders R

Untrusted
Implementation

Safe Implementation

Localize suspicious nodes
and generate tests to

activate them

Yes

No

F. Farahmandi, Y. Huang and P. Mishra, Trojan Localization using Symbolic Algebra,
Asia and South Pacific Design Automation Conference (ASPDAC), 2017.

Model Specification and Implementation to Polynomials

61

Partition Specification and Implementation

Netlists to combinational regions

Model each region as a one Polynomial

F3
F2

F1

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Equivalence Checking

62

Fspec_1 Fspec_2

Fspec_3

Fspec_i

Fspec_j
Fspec_n

….

Specification
Polynomials

F1

F3

F2

Fi

Fl

Fm

Fk

Fj

Implementation
Polynomials

 Fspec_i =Cs*Fs+ Cs+1*Fs+1 +…+ Ck*Fk + ri

 If ri is zero, implementation polynomials safely implement

the function Fspec_i

Corresponding gates of implementations are safe

 If ri is non-zero, Malfunctions exist

There are som untrustworthy gates

=
?

 Reduce each Fspec_i over corresponding

implementation polynomials

Example: Extracting Specification Polynomials

Part of specification netlist

Specification Polynomials:

Fspec1: n1 - (A+n2-2*A*n2)=0

Fspec2: Z - (n1*B)=0

63

Example: Extracting Implementation Polynomials

 Correspoonding part of implementation Netlist

Trojan is inserted

 Implementation polynomials

Fspec1: n1 - (n2*w4*A - n2*w4+ w4- n2*A)=0

Fspec2: w4 - (A- n2*A)=0

Fspec3: Z - (n1*w4*C*B- + n1*w4*C- n1*B+1)=0

64

Example: Equivalence Checking

65

Specification Implementation

 Gates {1,2,3,4,5} which construct the Fspec1 are safe

 Gates {2,4,6,7,8} which construct the Fspec2 are suspicious

Trojan Localization

66

 Safe Gates GS:

 Which are contributing in generating

zero remainders

 Faulty Gates GF:

 Which are contributing in

generationg non-zero remainders

 Unused Gates GU:

 Extra gates that does not map to any

of specification functionalities

 Potential Trojan Gates
 GT = GF – GS U GU

Potentila Trojan gates

Unused

gates

Safe
region#1

gates

Faulty

Gates

Example: Trojan Localization

Safe Gates: {1,2,3,4,5}

Faulty Gates: {2,4,6,7,8}

Potential Trojan Gates: {6,7,8}

67

Results: Trojan Localization

68

Benchmark #Suspicious Gates False
Positives

False positive

Improvement

Type Gates

#Trojan
GAtes FANCI Formality Ours Our FANCI Formality

RS232-T1000 311 13 37 214 13 0 * *

RS232-T1100 310 12 36 213 14 2 31x 100.5x

S15850-T100 2456 27 76 710 27 0 * *

S38417-T100 5819 11 69 ** 13 2 29x **

S38417-T200 5823 15 73 2653 26 11 5.27x 240x

S35932-T200 5445 16 70 138 22 6 9x 20.3x

S38584-T200 7580 11 85 47 9 11 37.5x 23.5x

Vga-lcd-T100 70162 5 706 ** 22 17 41x **
“*” indicates our approach does not produce any false positive gates (infinite improvement)

“**” shows the cases that Formality could not detect the Trojans.

[FANCI] A. Waksman et al., CCS, 2013.

Trojan Activation

69

A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, Scalable Hardware
Trojan Activation by Interleaving Concrete Simulation and Symbolic
Execution, International Test Conference (ITC), 2018.

Outline

70

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Property Checking of Unwanted Scenarios

 Equivalence Checking to Identify Threats

 Theorem Proving of Design Alternations

 Conclusion

Results: Trojan Localization

71

Benchmark #Suspicious Gates False
Positives

False positive

Improvement

Type Gates

#Trojan
GAtes FANCI Formality Ours Our FANCI Formality

RS232-T1000 311 13 37 214 13 0 * *

RS232-T1100 310 12 36 213 14 2 31x 100.5x

S15850-T100 2456 27 76 710 27 0 * *

S38417-T100 5819 11 69 ** 13 2 29x **

S38417-T200 5823 15 73 2653 26 11 5.27x 240x

S35932-T200 5445 16 70 138 22 6 9x 20.3x

S38584-T200 7580 11 85 47 9 11 37.5x 23.5x

Vga-lcd-T100 70162 5 706 ** 22 17 41x **
“*” indicates our approach does not produce any false positive gates (infinite improvement)

“**” shows the cases that Formality could not detect the Trojans.

[FANCI] A. Waksman et al., CCS, 2013.

Trojan Activation

72

A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, Scalable Hardware
Trojan Activation by Interleaving Concrete Simulation and Symbolic
Execution, International Test Conference (ITC), 2018.

Outline

73

 Introduction

 Design for Security

 Simulation-based Validation

 Test Generation for Trust Validation

 Side Channel Analysis

 Formal Verification Approaches

 Property Checking of Unwanted Scenarios

 Equivalence Checking to Identify Threats

 Theorem Proving of Design Alternations

 Conclusion

Theorem Proving

Theorem Proving: Prove/disprove properties

of systems expressed as logical statements

Types: Automated Theorem Provers (SMT,

SAT solvers) and Interactive Theorem Provers

(Coq, NuPRL)

Advantage: Verification of large hardware

designs

Limitation: Proof construction in interactive

theorem provers could be tedious

Application: Use of Coq in Proof-Carrying

Hardware framework for verifying soft-IP cores

Proof-Carrying Code (PCC)
 Use formal proof to establish software trustworthiness

Developed by G. Necula and P. Lee in ’96[1]

Central idea: supplier of software provides

formal proof ensuring software’s safety

 Implementation Procedure

Compile Source

Write proof of specification for the

binary code

Validate Proof

Execute

G. C. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 106-119, 1997.

Source Code

Compiler

Proof Binary

Proof Validation

Trusted Binary / FAIL

Proof-Carrying Hardware IP Cores

 Trusted IP Acquisition (consumers)

User receives IP code AND

a formal proof regarding the code’s

trustworthiness

Existence of Proofs certify verification

of HDL code against security

properties

 Proofs are validated automatically

and efficiently by the proof checker in

Coq

Unlike functional specifications,

security properties concern both

functionality and information

sensitivity

HDL

Code

Proof Code

for Security

Properties

Automated

HDL to Coq

Conversion

Circuit

in Coq

Proof

Checker

(Coq)

Trusted Hardware Bundle (Delivery)

Trust Evaluation Procedure

PASS/FAIL

X. Guo, R. Dutta, P. Mishra and Y. Jin, Scalable SoC Trust Verification using
Integrated Theorem Proving and Model Checking, HOST, pages 124-129, 2016.

Working Procedure – Main Parties

IPV 1 IPV 2 IPV k... Verification House

System

Integrator

5. Proof

Validation

IP Consumer

IP Vendors Trusted Third Party

X. Guo, R. Dutta, P. Mishra and Y. Jin, Automatic Code Converter Enhanced PCH
Framework for SoC Trust Verification, IEEE Transactions on VLSI, December 2017.

Scalable SoC Trust Verification using Integrated
Theorem Proving and Model Checking

Scalable SoC Trust Verification using Integrated Theorem Proving and Model Checking, HOST 2016

• Formal Methods Integration

• Theorem Prover (TP) - Coq

• Model Checker (MC) – Cadence IFV

• First attempt to verify security properties

on large-scale hardware by integrating TP

and MC

• Distributed Proof Construction

• Decomposition of hardware design & security

specification theorem

• Sub-modules against lemmas of security

properties

• Prove security specification by combining

results of lemmas of security properties

SoC design

In
te

g
ra

te
d

 F
ra

m
ew

o
rk

Theorem Prover

(Coq)

Model Checker

(Cadence IFV)

Architecture of Integer Unit

Procedure

op_mux

Procedure

rd_gen

Procedure

regaddr

Proof of Ф

exists

Contradiction

Exists

Lemma Ф1 Lemma Ф2 Lemma Фk

Outline

79

 Introduction

 Design for Security

 Security and Trust Validation

 Simulation-based Validation

 Side Channel Analysis

 Formal Verification

 Analog/Mixed-Signal Validation

 Conclusion

Attacks and Countermeasures

Leak Sensitive

Information

Modify Functionality

Reduce Reliability

Denial of Service

(DOS)

Steal Design /

Secrets

Identify Trade

Secret

Maliciously Circuits

(Trojans)

Illegally Copy & Re-

produce Designs (IP

Piracy)

Reverse Engineering

(RE) and Tampering

Side-Channel Attack

Counterfeiting

Trojan Detection and

Prevention

Physical Unclonable

Functions (PUFs)

True Random Number

Generators (TRNGs)

Anti-RE and Anti-

Tampering

Countermeasure for

SCA

Counterfeit Detection

and Anti-

Counterfeiting

Attack Goal Attacks
Security Primitive /

Countermeasure

Simply Making Profit

Thank you!

prabhat@ufl.edu

http://www.cise.ufl.edu/~prabhat

