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SoC Design using Intellectual Property (IP) Blocks

m (ADC/DAC/PLL/Power
Management)

Video/Graphics {7 . %V’ c‘?oo.o

= Multiple IP Core Types
5" 7

(incl. peripheral drive
Global Distribution of Semiconductor IP Vendors

m Processor Core
= Memory Controller
Network/Connectivity

Long and globally distributed supply chain of hardware IPs makes
SoC design increasingly vulnerable to diverse trust/integrity issues.

Prabhat Mishra, Swarup Bhunia and Mark Tehranipoor (Editors), Hardware

IP Security and Trust, ISBN: 978-3-319-49024-3, Springer, 2017.
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Farimah Farahmandi, Yuanwen Huang and Prabhat Mishra, System-on-Chip Security

Validation and Verification, Springer, ISBN: 978-3-030-30596-3, 20109.



Electronics Supply Chain Security
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What are the challenges?

(a) [ Hardware IP Security Issues J
y Y y

Piracy Reverse Malicious
Engineering Modification

{ During J —( Cloning )

Evaluation (" Re-marking )

_>( After-sale ) _{Counterfeiting)

Hardware
Trojan Attacks!

Taxonomy of hardware IP security issues




HW Trojan Threats

Std.
IP Tools Cells Models

Most vulnerable stages!

Specifications Design Fab Interface - -

Trusted _— Wafer
. Zﬁc?y Package Dice and Wafer
Either : Test Package Probe
Monitor

@) Untrusted

Modern SoC Design and Manufacturing Flow*

*http://lwww.darpa.mil/MTO/solicitations/baa07-24/index.html



HW Trojan Examples/Models
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HW Trojan: in the News

Fishy Chips: Spies Want to Hack-Proof

Circuits
By Adam Rawnsley
06.24.11
12:00 PM

Follow

Can Darpa Fix the Cybersecurity

‘Problem From Hell?’

By Adam Rawnsley
08.05.11
9140 AM

Follow @arawneiey

In 2010, the U.S. mil#ary had a problem. It had bought over 59,000 microchips destined for
mstallation in everything from missile defense systems to gadgets that tell friend from foe. The
chips turned out to be counterfeits from China, but # could have been even worse. Instead of
crappy Chinese fakes bemng put into Navy weapons systems, the chips could have been hacked,
able to shut off a missile i the event of war or ke around just waiting to malfunction.

There are computer security threats — and then there are computer security nightmares, Put

sabotaged circaits firmly in the second category. Last week, retred Gen. Michael Hayden, the

former CIA and NSA chief, called the hazard of hacked hardware “the problem from hell.”

“Frankly, ’s nof a problem that can be salved,” he added. “This is a condition that you have to
e.”
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Why iIs Trojan Detection Challenging?

Trojans are stealthy
Conventional ATPG is not effective

Inordinately large number of possible Trojan instances

Combinatorial dependence on number of circuit nodes
8-bit ALU (c880) with 451 nodes — ~10 possible 4-input Trojans!

Sequential Trojans extremely hard to detect

T ave— 1

PR — 1y
B '|ﬁD_I*C

|
| |
§ >°' | |
Trigger = {00} Payload |




Outline
»

® Design for Security

“* Logic locking, obfuscation, watermarking, PUF, ...



HW Obfuscation for IP Protection

e Global Hardware Piracy estimated at $1B/day*
e Causes loss of market share, revenue and reputation

e Affects all parties (IP vendors, IC design houses and System
Designers)

Watermark Example
IP Protection

case (case_select)

3’d0: out=4"d1;
3’d3: out =4’ d4:;
3’d5: out =4’d6:;

Obfuscation-based Authentication Based 3'd7: out=4’ d8;
default : out =
4’ bO;
Source Code Source Code RTL Hardware Hardware endcase

String Processing Encrytion Watermarking Watermarking Lock-and-key



Obfuscation-based IP Protection
e Cryptography-based:

HDL source-code is encrypted [Cadence " 05, Xilinx]
Licensed customer with correct key can de-crypt and use
Require proprietary design platform support
Unacceptable to many SoC design-houses

e String-processing based [Semantic]

= Removes comments
= Re-names internal wires and registers
= Affects readability and comprehensibility

e Code transformation based [Brzozowski &

Yarmolik]
= Loop unrolling
= Parallel block => sequential block
= Flattening register banks



Security Through Key-based Obfuscation

Basic ldea:

e Obfuscate the design
functionally and
structurally

e Achieved by modifying
the state transition function

e Normal behavior is
enabled only upon
application of a key!
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Design for Security

® |P Specific (Network-on-Chip) Protection
¢ Anonymous Routing
¢ Trust-aware Routing
¢ Authenticated Encryption
¢ Detection and Localization of DoS

n IP Core

u Shared Resources
n Router

Potentially
Malicious Node
. .,, Non-Secure

 Zone . Trusted Node

S Secure
Zone

S. Charles, Y. Lyu, P. Mishra, Real-time Detection and Localization of DoS Attacks in NoC

based SoCs, Design Automation and Test in Europe (DATE), Florence, Italy, 2019.
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Security and Trust Validation

% Simulation-based Validation
< Side Channel Analysis
% Formal Verification



Validation of System-on-Chip (SoC) Designs

Pre-Silicon
IglolEinEhielifels Verification
(System/RTL Level)

Manufacturing Post-Silicon
Testing Validation

/)

Integrated Circuit

Each Copy of
Integrated Circuit

M. Chen, X. Qin, H. Koo and P. Mishra, System-Level Validation: High-Level Modeling

and Directed Test Generation Techniques, ISBN: 978-1-4614-1358-5, Springer, 2012.



Post-Silicon Validation

Signal
bl |mplementation
(RTL/Gate Level)
----------------------- Manufacturing -
\
CuUD

Signal
Input g

Trace
Tests Output Buffer

Prabhat Mishra and Farimah Farahmandi (Editors), Post-Silicon
Validation and Debug, ISBN: 978-3-319-98115-4, Springer, 2018. 18
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Security and Trust Validation
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» Simulation-based Validation

®
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Simulation-based Validation
Tests ) Simulation Pass /
= -

! Coverage
e s e e e e e Analysis

® Simulation-based validation is widely used
¢ Uses billions to trillions of random tests
¢ Still no guarantee of covering important scenarios



Threat Model

Hardware Trojans

I
I I I I I |

Insertion Phase Abstraction Level Activation Mechanism Effect Location Physical Characteristic
Specification System Always On Change Distribution
Functionality =
Development rigere _w
Environment Degrade T
Internally ¢ ype
Fabrication Performance
Register Transfer Time Based Leak _m Parametric
TEStIn iti
: Gate Condition Based Power Supply —W
Assembly Externally Denial of Service ‘ Structure
and Package Layout Clock Grid
User Input Layout Same
Physical
Component Output Layout Change

# Trojan taxonomy from www.trust-hub.org
# Trojan detectable by our approach is highlighted

A. Ahmed, F. Farahmandi, Y. Iskander and P. Mishra, Scalable Hardware Trojan

Activation by Interleaving Concrete Simulation and Symbolic Execution, ITC, 2018.



Trust Metrics and Benchmarks

® Functional Validation
< Code coverage (statement / branch / path)
<+ FSM coverage (states and transitions)
<+ Property coverage (functional scenarios)

® Parametric Validation
< Power / thermal violations
< Real-time violations

< Rare-node / rare-scenario activations

Jonathan Cruz, Prabhat Mishra and Swarup Bhunia, The Metric Matters: How to
Measure Trust, Design Automation Conference (DAC), 2019.

@ Static and Dynamic Benchmarks

J. Cruz, Y. Huang, P. Mishra, S. Bhunia, An Automated Configurable Trojan Insertion

Framework for Dynamic Trust Benchmarks, Design Automation & Test in Europe 2018.




Directed Test Generation

A

Be

Random Test Directed Test
® Significantly less number of directed tests can achieve
same coverage goal than random tests

® Need for automated generation of directed tests
Y. Lyu, X. Qin, M. Chen and P. Mishra, Directed Test Generation for Validation of

Cache Coherence Protocols, IEEE Transactions on CAD (TCAD), February 2018.



Test Generation using Model Checking

Example: Generate a directed test to stall a decode unit (ID)

Negated Property .
(intended behavior) DeS|gn

assert G (ID.stall 1=1) Processor Model

Model Checker

Cycle Opcode Dest Srcl Src2

1 NOP
2 ADD R3 R1 R2
3 SUB R4 R3 R2

Solution: Exploit Iearhing to reduce test generation complexity

Problem: Test generation is time consuming and may not be

possible when complex design and properties are involved



Scalable Directed Test Generation
® Test generation based on model checking

assert G (ID.stall 1= 1) Processor Model  yomm

Needs translation from HDL to
SMV =» error prone

Model Checker

Cannot handle large designs,
needs abstraction =» error prone

Cycle Opcode Dest Srcl Src2
1 NOP

2 ADD R3 R1 R2
3 SUB R4 R3 R2

Desirable to verify the HDL directly!

® Concolic Testing — Interleaved concrete and
symbolic execution [Sen, CAV 2006

Yangdi Lyu, Alif Ahmed and Prabhat Mishra, Automated Activat

ion of Multiple Targets in RTL Models using
, Florence, Italy, March 25 - 29, 20109.

Concolic Testing, Design Automation and Test in Europe (DATE)




Scalable Directed Test Generation

RTL design Test Goal Simulation Trace
1 module counter(out, clk, reset);
2 parameter WIDTH = 8; _
3  output [WIDTH-1 : 0] out; (DUt’?} =0 0 '
4  input clk, reset (out,1) = (out,0) +
5 reg [WIDTH-1 : 0] out; I(I-‘:JLJEDS;’U)(;Tlt4?)nut1taken
6 wire clk, reset; i i y = 1 +
7  always @(posedge clk) Simulation IF (out,1) == 40 not taken
8  begin ‘ (out,3) = (out,2) + 1
9 out <= out + 1; IF (out,2) == 40 not taken

10 if (out == 40)

11 $display ("Activated”);
12 end

13 always @reset

14 if (reset)
15 out = 0; // initial value (out,1) |= (out,0) + 1
16 endmodule Eou’{,g; _=(4{]t 0 1
Constragint Solver '0ut.s) = (out,1) +
(out,1) != 40
(OUt,O) :38 (OUt,S) — {0[.”:,2} + 1
(out,2) = 40
Test Constraints

A. Ahmed, F. Farahmandi and P. Mishra, Directed Test Generation using Concolic

Testing of RTL Models, Design Automation and Test in Europe (DATE), 2018.



Concolic Testing

Combines concrete and symbolic execution

CFG of P
®
b,/ —b,
y Y
Generate Simulate b /’\ b
Input 2/ T

Solve ;Y
Symbolically m ‘




Concolic Testing

Combines concrete and symbolic execution

Generate
Input

Simulate

28



Concolic Testing

Combines concrete and symbolic execution

29



Concolic Testing

Combines concrete and symbolic execution

\
Solve v
Symbolically

C:bl/\bz/\_lb3

30



Concolic Testing

Combines concrete and symbolic execution

1,

Generate

Simulate b
Input 2

C=b1/\b2/\_lb3

31



Assertion-based Validation

Design + Instrumentation
(RTL/Gate-level) (Assertions/Checkers/etc.)

Slgnal Selectlo Bacammpoeition
Trace Buffer Design P

......................................... I"“"Méﬁl]ficturmg
Coverage [ Coverage >
Monitors le»| Design Analy5|s

Yy

SO Restoration
Buffer

Analysis

A
§ Pre-silicon
)/

Post-silicon
Analysis

dfeccccccanccnccsoncacsacns



Coverage analysis for s9234

Coverage monitors are selected randomly

100 ¥ -
”
”
30
L
© 60
2 . Existing SS W=8
8 o e EXISTINE
2 I o g Existing SS W=16
40 7 e Excisting S5 W=32
. ” e OQUr §5 W=8
" . . QUr S5 W=16
= © e g QUr S5 W=32
”~
» e= « Using only coverage montors
o ng only coverag
0 -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
- Z .

Functional Coverage Events, Design Automation and Test in Europe (DATE), 392-397, 2017.



Coverage analysis for s9234

Coverage monitors are selected from hard-to-detect events

100 = = = = - = -
7/
/7
80 .
e Fxistng SS W=8 /
@ g ExiSting SS W=16 /7
(@)
S 60 Z
5 g FiSTNE S5 W=32 /
Q "
® /7
g Qur 55 W=8 .
40 /
g QUr S5 W=16 e
/7
Our SSW=32 >
20 /
- « Using only coverage monitors ,
0 -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Synthesized Coverage Monitors

F. Farahmandi, R. Morad, A. Ziv, Z. Nevo and P. Mishra, Cost-Effective Analysis of Post-Silicon

Functional Coverage Events, Design Automation and Test in Europe (DATE), 392-397, 2017.
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Security and Trust Validation
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HW Trojan Detection

Logic Testing Side-Channel Analysis

Pros ® Robust under process noise e Effective for large Trojans
e Effective for ultra-small Trojans e Easy to generate test vectors

Cons | e Difficult to generate test vectors | e Vulnerable to process noise
e Large Troj. detection challenging | e Ultra-small Troj. Det. challenging

Y. Huang, S. Bhunia and P. Mishra, MERS: Statistical Test Generation for Side-Channel Analysis based Trojan

Detection, ACM Conference on Computer and Communications Security (CCS), pages 130-141, 2016.




Logic Testing for Trojan Detection

Inputs

(test vectors)
Outputs

101101...10

111101......00000000101

111101......00100000101

Not effective:

(1) Test space (no way to cover all inputs and all circuit states)

(2) Trojan space (unknown locations, unknown triggers)
(3) Trojan is stealthy (rare triggering)

37



Side Channel Analysis (SCA) for Trojan Detection

Inputs
(test vectors)

Side Channel Signature (current)

101101...10

Not effective:

(1) Trojan is small and dormant (different of signature is small)

(2) Sensitivity (process noise and background switching)

38



Our Approach: Logic Testing + SCA

Side Channel Signature
(switching)

High-quality tests

Statistical test generation
(Multiple Excitation of

Rare Switching, MERS)

Side Channel Signature
switching
Y. Huang, S. Bhunia, P. Mishra, Scalable Test Generation for Trojan Detection using

High-quality tests

Side Channel Analysis, IEEE Trans. on Information Forensics & Security (TIFS), 2018.



Multiple Excitation of Rare Switching (MERS)

@ Non-rarenode @ Rarenode



MERS: Test Reordering

Before reordering:

@ Non-rarenode @ Rare node

41



Effect of Increased Total Switching

c2670
—=— Avg MaxDeltaSwitch —— Avg TotalSwitch
20 660
17.5 620
S S
3 S
“ 15 580 »
= &
Q S
12.5 240
10 200
AN\ T, | B Q© Q® A Q0
'D - - - ,..r" -~ -

Total Switch also increases with N ====> Tests reordering
42



MERS: Test Reordering

After reordering:

@ Non-rare node

@ Rare node

43



Effect of Weight Ratio (C)
c2670

—— Avg SideChannelSensitivity —&— Avg TotalSwitch

0.04 720
=
S 0.035 640
; 5
2 S
= 0.03 560 «»
s 3
& P
¢
E 0.025 480

0.02 400

© @S NN 2 S A 90 D QP
?.’E*“ﬁn @ﬁ'« &eﬁ.‘a ) G G C G C 0__,’\

Y. Huang, S. Bhunia P. Mishra, MERS: Statistical Test Generation for Side-Channel Analysis based

Trojan Detection, ACM Conf. on Computer and Communications Security (CCS), 2016.
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® Security and Trust Validation

» Formal Verification

» Property Checking of Unwanted Scenarios
> Equivalence Checking to Identify Threats
» Theorem Proving of Design Alternations



Checking Non-functional Properties

® Find a path that satisfies a specific property

S

eo[0us, Om.J]

Taskl at 0.9v
m,z[/SOD C1

eg[15us, 40mJ|

eq [Ous, OmJ]

Taskl at 0.5v

n1,1[70 e4[21lus,31mJ]

ea[20us, 30m J]

es5[20us, 41mJ]

712,1[?00 C1 HQ,Q[SUDC]

eg[9us, 24-%

er[12us, 18mJ]|

Task2 at 0.5V Task2 at 0.9v

X. Qin, W. Wang and P. Mishra, Temperature- and Energy-Constrained Scheduling in

Real-Time Multitasking Systems, |IEEE Transactions on CAD (TCAD), 2012.



Model Checking using UPPAL

TASK1V1
exec<c[0]
O

((d[0]>0 && time<d[0]) || d[0]<0) N )
T=calcTemperature(P[0],T,c[0]), N,
E=calcEnergy(P[0],c[0]), N,
exec=0 N ERROR

TASK2V1 \O

exec=c[2] i

® TCEC requirement can be written in CTL as:
®EG ((T < Tpax AE < Epygger) U Acend)

® |f the model checker does not support
“until”:
¢EF (iIsTSafe A isESafe A A.end)

® In UPPAAL’s property description

o o o o o



FSM Anomaly Detection

a=1&b=1

' Get Pass. I(a=1 & b=1) Check Pass.

10

//"6 ! Don'tcare |
(o) . ]
% v ‘\ 1 (D) !

Ca ° . ’
o'<$ 6\\ ) \\ - c'
’
)’O.o o" ~..-¢"
o
Y
yt\

A. Nahiyan et al., Security-aware FSM Design Flow for Identifying and Mitigating
Vulnerabilities to Fault Attacks, IEEE Transactions on CAD (TCAD), 2018.

F. Farahmandi and P. Mishra, FSM Anomaly Detection using Formal Analysis, IEEE
International Conference on Computer Design (ICCD), 2017.
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Security and Trust Validation
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» Formal Verification

>
> Equivalence Checking to Identify Threats
>



Equivalence Checking
® Traditional Equivalence Checkers

® Equivalence Checking using SAT Solvers

Specification

Implementation

® Does not work for industrial designs
unless the design structure (FSM) Is
similar



Groebner Basis and Polynomials

Gate Level

Implementation B¥ Generate Polynomial Set (F) Represents
of Arithmetic an ldeal |

Circuit

Compute
Groebner
Basis (G)

Arithmetic Circuit
Specification (fopec)

Remainder=0 ? ——> Not Equivalent

l, Yes

Equivalent
F. Farahmandi and P. Mishra, DATE 2016.



Groebner Basis

® et K be a computable field
& K[x{, x,, ..., x,,] be the polynomial ring in n variables

® Polynomial f € K[x4, x5, ..., x,,] IS Written as
f —_ C1M1 + C2M2 + .-+ Cde

® |deal | Is represented by
< fifar e fs >={Xi=1hifi: hi,hy, ..., hs € K [x1,%x5, ..., %51}
®F={f, /s ..., fs} Is called generator or basis of ideal |

® Every arbitrary ideal other than {0} has a basis with
specific properties which is called Groebner basis




ldeal Membership Algorithm

® The set G Groebner basis of ideal | If and
only if
¢ For all polynomial f € I the remainder of reducing
f w.r.t polynomials of G is zero

¢ Reduction is a sequential division of f on set G
with respect to a specific order

® Groebner Basis has to be computed



Integer Polynomial of Logical Gates

® Every Boolean variable a can be consider as
¢ ac{0l}cZz
®¢a’=a

® Every logical gate can be modeled with an
iInteger polynomial
z=NOT(a) => f=z—(1—-—a)=0
z=AND(a,b) =>f=z—a.b =0

z=0R(a,b)=>f=z—(a+b—a.b)=02z=
XOR(a,b)=>f=z—(@+b—2.a.h) =0

F. Farahmandi et al., Effective Combination of Algebraic Techniques and Decision Diagrams to
Formally Verify Large Arithmetic Circuits, ISVLSI 2014.



lllustrative Example

A S

—
B _ - .
Cin Fu” Adder Cout fspec 2xCout+ S (A + B + Cln) 0
— —_—

W Cout>S>{W3>W2}>W1> {A> B> Cin}

3
) D - Circuit’s Polynomials:
s | L F={W1-(A+ B—2*A*B) =0,
W W2 — (W1 * Cin) = 0,
= Car W3 — (A*B) =0,
— S — (W1 +Cin — 2*¥*W1*Cin) = 0,
— - Cout — (W2 + W3 - W2*W3) =0}

All circuit polynomials have relatively

prime leading terms 2 F =G




lllustrative Example: Reduction Step

® Sequential Division with following order:
¢ Cout=2>?>*S=>?*$GW3>2>W2=>W1=>Cin=>A=>B

® The dividend is
® fopec =2*Cout+S—(A+B+Cin) =0

® Steps:
¢ 1: cancle Cout with 2*(Cout — (W2 + W3 - W2*W3))
O Remainder = S -2*W2*W3+ 2*W3+ 2*W2 - A-B - Cin
¢ 2:cancle S with 1*(S — (W1 +Cin — 2*W1*Cin))
O Remainder = -2*W2*W3+2*W3+ 2*W2+ — 2*W1*Cin+ W1 - A -B
¢ 3: cancle W3 with (2-2W2) *(W3 — (A*B))
O Remainder = 2*W2+2*W2*A*B — 2*W1*Cin + W1+2*A*B- A -B
¢ 4. cancle W2 with (2 + 2*A*B)*(W2 — (W1 * Cin))
O Remainder = 2*A*B*C*W1+W1+ 2*A*B -A - B
¢ 5: cancle W1 with (2*A*B*C+1) * (W1 — (A+ B — 2*A*B) )

0 Remainder =0 The design has correctly implemented the specification



Automated Detection and Correction

Verification Debugging

Gate-level . -
Combinational peci lcattlon
Circuit Polynomial

Simulate Tests

{

Equivalence Checking

..

Find Find Faulty
. i Regions
l Remainder IEAELUE USRI Tests al
make

.

Pattern
Construction

Detect/Correct

Correct Buggy . Bug
Circuit Circuit

remainder non-
Remainder == zero

F. Farahmandi and P. Mishra, Automated Test Generation for Debugging Multiple Bugs

in Arithmetic Circuits, IEEE Transactions on Computers (TC), 68(2), 182-197, 2019.



Example (Correct Implementation)

® Consider a 2-bit Multiplier
¢ fspec =7 — (A.B)
¢ Order:{Z,,Z3}> {Z{,R} >
¢ {Zy,M,N,0}>{41,4¢, By, Bo}

® Verification Steps: |

2 ﬁcpec: 823 + 4‘22 + 221 + ZO - 4.A1.Bl - Z'AI'BO - ZAOBl - AOBO
® Cancel Z,and Z;
® Stepl: 4R +4.0 + 2.7, + Zg — 4. A1 B; — 2. A1. By — 24,B, — Ao B,

® Cancel R and Z;
& Step2:4.0+2.M+2.N+ Zy—4.4;.B; —2.4,.By — 2A¢B; — AoB,

® Cancel Zy,,M,N, O
¢ Step 3: (remainder): O -



Example (Buggy Implementation)

® Consider a buggy 2-bit Multiplier
* fspec =Z— (A.B)
* fspec =8.2Z3+4.Z,+2.Z1+ Zy—((2.41+4AHN. 2 ™ + P

The remainder shows the
difference of functionality of
an OR gate and AND gate

Jspecg 1823 +4.Z2+2.21 + Zyp —4.A1.By —2.A1 By — 2.A09.B1 — Ao.Bo
fspecl :4.R + 4.0 + 2.21 + Zg - 4.A1.Bl - 2.A] BD — 2.A0.Bl — A{).BO
f&i'p{::(‘._f) : 4.0 -I- 2.M -I- 2.N -|- Zg - 4.A1.Bl - 2.,4] Bg - Q.AD.Bl — AO-B{}

fspecs (remiander) : 2.A7 + 2.By — 4.A1.By

59



Trojan Detection using Polynomials

Golden Netlist Implementation

Specification Implementation

polynomials S polynomials I

Reduce Set S over set | to obtain Remainders R

yes Untrusted
Implementation

No Localize suspicious nodes

and generate tests to
activate them

9

Safe Implementation

F. Farahmandi, Y. Huang and P. Mishra, Trojan Localization using Symbolic Algebra,

Asia and South Pacific Design Automation Conference (ASPDAC), 2017.



Model Specification and Implementation to Polynomials

® Partition Specification and Implementation
Netlists to combinational regions

¢ Model each region as a one Polynomial

| UJUU
Y
v

|

¥
.
]

61



Equivalence Checking

® Reduce each F.,.. . over corresponding

spec_i
Implementation polynomials
Specification Implementation

Polynomials Polynomials
I:spec_l Fs o | Fspec_2 ? I:1 F2 F
- — " F F |
Fspec_3 Fspec_n Fspec_j Fj | ‘ Fm

—C * * *
® I:spec_i _Cs Fs+ Cs+1 Fs+1 ...t Ck |:k T [

¢ If 1, Is zero, Iimplementation polynomials safely implement
the function Fg,,. ;

¢ Corresponding gates of implementations are safe
¢ If 1, IS non-zero, Malfunctions exist
¢ There are som untrustworthy gates
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Example: Extracting Specification Polynomials

® Part of specification netlist

A P
Z
B —
= }-D
® Specification Polynomials:
OF ec1: Ny - (A+N,-2*A*n,)=0

®F.o: Z - (n*B)=0
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Example: Extracting Implementation Polynomials

® Correspoonding part of implementation Netlist
¢ Trojan is inserted

® Implementation polynomials
¢ Fspecl: Ny - (nZ*W4*A ) nZ*W4+ Wy- nZ*A):O
¢ Fspecz: Wy - ( A- nZ*A):O
‘ FSpECB: Z = (nl*W4*C*B' + nl*W4*C' nl*B+1):O
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Example: Equivalence Checking

A 11— w3 ny .
Feopect: Ny - (A+Ny,-2*A*n,)=0 o B s >0 e}
speci 1 ( 2 2) [ = z >
2 — w Q
C z
. * —_ 6 8
Fspec2' Z - (n1 B)_O = TR Ws }D
B Payload e
Specification Implementation

fspecy 11+ 2.Ang —ng — A
step11 : —l.wg.wy +wg +wyg +2.1n9.A—ng9g — A
step1o : —lwg.wy.ng. A+ ng.wy + Awg +2n9. A —ng — A
step1a(r1) : 0

=>» Gates {1,2,3,4,5} which construct the F
fspeco 1 4 +n1.B —1
stepo1 : —lL.wg.n1 +n1.B

spec1 Are safe

stepoo : —1.n1.ws + B.n1.ws

stepasg @ —1.n1.C.wg + B.ny.Clwg

stepag : —1.n1.C. Aws + Bny.C.Aws

stepas(ra) : —1.n1.A.C +n1.ny. A.C+A.B.Cny — A.B.C.nqy.n9
=>» Gates {2,4,6,7,8} which construct the Fopeco @re suspicious



Trojan Localization

® Safe Gates Gq:

¢ Which are contributing in generating
zero remainders

Safe
® Faulty Gates Gg: iegion#1
: T gates
¢ Which are contributing in

generationg non-zero remainders Unused

gates

® Unused Gates G;:

¢ Extra gates that does not map to any
of specification functionalities

: : Potentila Trojan gates
® Potential Trojan Gates
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Example: Trojan Localization

® Safe Gates: {1,2,3,4,5}
® Faulty Gates: {2,4,6,7,8}
® Potential Trojan Gates: {6,7,8}

Payload



Results: Trojan Localization

Benchmark #Suspicious Gates False False positive
Positives Improvement
#Trojan
Type Gates| GAtes | FANCI |Formality| Ours Our FANCI Formality
RS232-T1000| 311 | 13 37 214 13 0 * *
RS232-T1100| 310 12 36 213 14 2 31x 100.5x
S15850-T100| 2456 | 27 76 710 27 0 * *
S38417-T100( 5819 | 11 69 5 13 2 29x *E
S38417-T200| 5823 | 15 73 2653 26 11 5.27x 240x
S35932-T200| 5445 | 16 70 138 22 6 9x 20.3x
S38584-T200( 7580 | 11 85 47 9 11 37.5x 23.5x
Vga-lcd-T100 |70162| 5 706 ** 22 17 41x ok

“*” indicates our approach does not produce any false positive gates (infinite improvement)
“**” shows the cases that Formality could not detect the Trojans.
[FANCI] A. Waksman et al., CCS, 2013.




Trojan Activation
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Outline
O

@
® Security and Trust Validation

» Formal Verification

>
>
» Theorem Proving of Design Alternations



Results: Trojan Localization

Benchmark #Suspicious Gates False False positive
Positives Improvement
#Trojan
Type Gates| GAtes | FANCI |Formality| Ours Our FANCI Formality
RS232-T1000| 311 | 13 37 214 13 0 * *
RS232-T1100| 310 12 36 213 14 2 31x 100.5x
S15850-T100| 2456 | 27 76 710 27 0 * *
S38417-T100( 5819 | 11 69 5 13 2 29x *E
S38417-T200| 5823 | 15 73 2653 26 11 5.27x 240x
S35932-T200| 5445 | 16 70 138 22 6 9x 20.3x
S38584-T200( 7580 | 11 85 47 9 11 37.5x 23.5x
Vga-lcd-T100 |70162| 5 706 ** 22 17 41x ok

“*” indicates our approach does not produce any false positive gates (infinite improvement)
“**” shows the cases that Formality could not detect the Trojans.
[FANCI] A. Waksman et al., CCS, 2013.




Trojan Activation

®m MERO mFANCI m Formality Our Approach

100000
N
Il
=
£ 10000
v
2
o
g 1000
=
=
Z
100

$15850-T100 $35932-T200

A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, Scalable Hardware

Trojan Activation by Interleaving Concrete Simulation and Symbolic
Execution, International Test Conference (ITC), 2018.




Outline

4

0

)

(4

0

)

® Formal Verification Approaches

\/
0‘0

\/
0‘0

< Theorem Proving of Design Alternations
|



Theorem Proving

® Theorem Proving: Prove/disprove properties
of systems expressed as logical statements

® Types: Automated Theorem Provers (SMT,
SAT solvers) and Interactive Theorem Provers
(Coqg, NuPRL)

® Advantage: Verification of large hardware
designs

® Limitation: Proof construction in interactive
theorem provers could be tedious

OAppllcatlon Use of Coq in Proof-Carrying
Hardware framework for verifying soft-IP cores




Proof-Carrying Code (PCC)

® Use formal proof to establish software trustworthiness
¢ Developed by G. Necula and P. Lee in '96

¢ Central idea: supplier of software provides
formal proof ensuring software’s safety Source Code

® Implementation Procedure p—
ompiler

¢ Compile Source

¢ Write proof of specification for the

binary code

Proof Validation

¢ Validate Proof

& Execute Trusted Binary / FAIL

G. C. Necula. Proof-Carrying Code. In Proceedings of the 24t ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 106-119, 1997.



Proof-Carrying Hardware IP Cores

® TrUSted IP ACC]UiSition (consumerS) Trusted Hardware Bundle (Delivery)

QUser receives IP code AND .
a formal proof regarding the code’s D N

trustworthiness HDL Proof Code
: : - , Code for Security
QExistence of Proofs certify verification w

of HDL code against security

properties Automated
Q Proofs are validated automatically Aieairia
o ] onversion
and efficiently by the proof checker in ERo
Coq N Checker
: : L . y (Coq)
QUnlike functional specifications, Circlt
security properties concern both in Cog v
functionality and information N~ PASSIFAIL
Sensitivity Trust Evaluation Procedure

X. Guo, R. Dutta, P. Mishra and Y. Jin, Scalable SoC Trust Verification using

Integrated Theorem Proving and Model Checking, HOST, pages 124-129, 2016.



Working Procedure — Main Parties

IP Consumer
5. Proof
Validation
System v
4 et %
Integrator ", % ¢
& AN
,{}0 P e ( '9/ .ﬁ
&8 ° Q% 3
& C % % %
coQ % @ °¢ <.
&\ ) € ??% %
é{}o b@ })6 ~
& P %
W ks
IPV1 IPV2 ¢+ IPVK Verification House
IP Vendors Trusted Third Party

X. Guo, R. Dutta, P. Mishra and Y. Jin, Automatic Code Converter Enhanced PCH

Framework for SoC Trust Verification, IEEE Transactions on VLS|, December 2017.



Scalable SoC Trust Verification using Integrated
Theorem Proving and Model Checking

« Formal Methods Integration « Distributed Proof Construction
«  Theorem Prover (TP) - Coq » Decomposition of hardware design & security
«  Model Checker (MC) — Cadence IFV specification theorem
- First attempt to verify security properties *  Sub-modules against lemmas of security
on large-scale hardware by integrating TP properties
and MC »  Prove security specification by combining

results of lemmas of security properties

Architecture of Integer Unit

Procedure Procedure Y Procedure
rd_gen regaddr op_mux

e

Specification (®)

SoC design »
Model Checker -
(Cadence IFV)

Theorem Prover »

Proof of ®
exists
Contradiction
Exists

Specification (®) Theorem @ i

Integrated Framework

4

(Coq)

Scalable SoC Trust Verification using Integrated Theorem Proving and Model Checking, HOST 2016
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Attacks and Countermeasures

Attack Goal Attacks Security Primitive /
Countermeasure

Leak Sensitive Trojan Detection and

Information \v ~ Prevention

Modify Functionality \‘ Physical Unclonable
\ Functions (PUFs)

Reduce Reliability 4 4 o\ True Random Number
’ Generators (TRNGS)

l"\
"
Denial of Service \y/;}
(DOS) A/ Anti-RE and Anti-
4%

, T )
Steal Design / ampering

Secrets / \/ Countermeasure for
&

Identify Trade SCA

; : :
Secret Counterfeit Detection

and Anti-
Counterfeiting

Simply Making Profit
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