Electromagnetic and Machine Learning
Side-Channel Attacks and Low-Overhead
Generic Countermeasures

PURDUE Shreyas Sen?, Arijit Raychowdhury?
Acknowledgements: Debayan Das?, Josef Danial!, Anupam Golder?
SPARC Lab, ECE, Purdue University!

ICSRL, ECE, Georgia Institute of Technology?
August 25, 2019

CHES 2019

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech


https://engineering.purdue.edu/~shreyas/SparcLab/home.html
https://icsrl.ece.gatech.edu/

Stealing Secret from Distance

Reference: https://www.fox-it.com/nl/wp-
content/uploads/sites/12/Tempest_attacks_against_AES.pdf
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Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA
arxiv 2019 DAC 2019, TVLSI 2019

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ] [ White-Box Root-

Signature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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Background Side-Channel Attacks Countermeasures Remarks

Introduction

* Classical Cryptography treats security using
mathematical abstractions

* Classic cryptanalysis has had a huge success and
promise

* Analysis and guantification of crypto algorithm shows high
resilience against brute-force attacks

*Over the last two decades, many of the security
protocols have been attacked using physical attacks

» Take advantage of the underlying physical implementation
to recover secret parameters
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Power Side-Channel Basics

* Physical Implementations of crypto algorithms leak
iIntermediate data

e Data-dependent power leaks due to the switching

activity of the transistors Attack Complexity
 Why so powerful? 1E+72
: : 1E+64
Complexity of breaking AES-128 1E+56
128 12 1E+48
reduced from 2-°° to 2-<. L E+40
Divide and conquer approach: 1E+32
Byte-wise attack, 28 Combinations 1:?:
for each byte, and 16 key bytes. 100000000
1 [
Side Channel Brute Force
128 Key = 16 x 8-bit key Attack Attack
Byte-wise Attack Complexity: 16x23 =212 m Attack Complexity
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Power/EM Side-Channel Basics

Side Channel Attack (SCA) i * Power Consumption
/Electromagnetic radiations
emanating from ICs
performing crypto

5 operations can be picked

— up.
EM Signatures ‘ ]\/\/\/\/\/\/\/j\/\/\/ . . .
— [| VWV VWA,  Using statistical analyses,
SC Data (T) " 1
W —— the secret key operating in
Uk the hardware can be
g CEMA —'c°,?'£.°$<",’ | et =
‘BibeL revealed.
e} Oscilloscope * Most attackers treat these
EM emanations as a Black
Box!
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AES-256 is not enough!

Security

AES-256 keys sniffed in seconds using * AES-256 key recovered in just 5
€200 of kit a few inches away minutes from a 1 meter distance
Van Eck phreaking getting surprisingly cheap

By lain Thomson in San Francisco 23 Jun 2017 at 22:58 92( SHAREY

« Complexity of breaking AES-256
reduced from 22°6 to 213

L | « From AES-128 to AES-256, SCA
Side-channel attacks that monitor a computer’'s electromagnetic output to reSIStance Increases Ilnearly (2)()

snaffle passwords are nothing new. They usually require ditect access to
the target system and a lot of expensive machinery

Reference: https://www.fox-it.com/nl/wp-
content/uploads/sites/12/Tempest_attacks_against_AES.pdf

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech ¢



Attack Setup: Overview

*JJ Analogue Radio

Measurement Recording

‘ﬁ
N

\W

Analysis leakage Preprocess
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Background

Side-Channel Attacks

Countermeasures

Remarks

Loop antenna

Recording Hardware

External amplifier and
bandpass filters

SR-7100 Data Recorder

High-end
€200k
500 MHz (max BW)
1.3 GB/s (max data rate)

SPARC Lab, ECE, Purdue

Example attack setup

USRP B200 RTLSDR

Low-end Budget
€755 €20
56 MHz 2.4 MHz
184 MB/s 5.2 MB/s

ICSRL, ECE, Georgia Tech
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Simple Power Analysis: AES-256

1/0
VO Key Schedule
Idle 14 Rounds Idle
L | 1 L | | t\
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1074

Overview trace showing pattern dependent on AES algorithm
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Practical Power/EM Analysis Attacks

 Smart Cards — credit cards, etc. are vulnerable to these attacks
* |0T devices — 8/16-bit microcontrollers can be attacked
» Counterfeiting of e-cigarettes to gain market share

= |

b Lnton '
b 4

Program

® Balance Information

- Y eavep

(f) After recharging,
Balance : 30.050 (3%)

(a) Before recharging, (b) Balance : 20,050 tW)
checking balance with ATM '

= |

.

(d) Execution of our recharging program. (e) Completion of recharging
Amount of money you wish to recharge => 10,000 (%) S Kim et al.. Blackhat Asia 2017
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Encryption - AES

128 bit plaintext block 128 bit plaintext block Plain text (128 bits)
T —»{ Addroundkey |
Add round key “W W Round 10 l
L Bytesub
Shiftrows
Round 1 “ﬁ § W Round 9 - Mixcolumns
4 7| < 4 7 1 Addroundkey
\ &
) I ;
Round 2 — 8-. W _— W Round 8
ST E |8
8 11| 7 - Bytesub
o Shiftrows
Addroundkey
\
Cipher lext (128 bils)
Round 10 BT w Add round key
40 43 40 43
l T * Symmetric Key
128 bit ciphertext block 128 bit ciphertext block E nc ryptl on

« Algorithm Known

AES Encryption AES Decryption * Key Secret

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 15



Background Side-Channel Attacks Countermeasures Remarks

Physical Attacks

* Traditional cryptography revolves around the concepts of
one-way and trapdoor functions.

* One-wayness: The function is easy to compute, but hard
to invert.

* A trapdoor one-way algorithm involves a function which is
easily invertible if and only if the secret “key” is available.
 Physical attacks occur in 2 phases:

 Data collection: The attacker exploits certain physical
characteristics (power/EM) of the device under attack.

 Attack: Run statistical analysis on the gathered traces to recover
the secret key.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 1s
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EM & Power Side-Channel Analysis: Attack Models

* Power consumption (& EM radiation) Voo "
proportional to the total number of |
bit flips.

m =
« Hamming Weight (HW) Model:
Number of 1's on the data bus

« Hamming Distance (HD) Model:
Number of bits switching from
previous state to the next.

« HW model is a special case of the

HD model. |
Cl -> load capacitance
* Dynamic Power (0->1) vdd -> supply voltage 3
PO->1 -> probability of a 0->1 transition
— 2 _
den = CLVDDPO—>1f f -> frequency

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 17
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Information Leakage

Hamming Weight or Hamming Distance Leakage

Voltage

=
— . ] ’ ~ ' . .
— : : : il : : :
IIIII“IIVIIIFIIII‘III‘VIII‘III1TITI1I‘ITITY

Time
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Attack Models: HW vs HD

 Hamming Weight (HW) Model: Crude model, but
useful for software implementations in
microcontrollers.

« Hamming Distance (HD) Model: Considers both 1-
0 and 0O-1 transitions equal, useful for hardware
Implementations where the same register is used
to store the updated states.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 19
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Non-Profiled and Profiled attacks

* Non-Profiled SCA:
» Direct attack on a target device

using HW/HD leakage model.
EM/.Power * EgQ. Differential/Correlational
Analysis Attacks power analysis (DPA/CPA).
 Profiled SCA attack:
« Build offline template using an

identical device

Non-Profiled Profiled « Perform attack on a similar
Attacks device with fewer traces (more
Attacks powerful attack).

« Eg. Statistical template attacks,
machine learning based
attacks.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 20
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Attack Modalities

*Chosen Plaintext Attack: Assumes that the
attacker has full control on the device and can
collect power/EM traces for different Input
plaintexts.

Easy aftack on microcontrollers, wuseful to test
countermeasures on software implementations

Known Ciphertext Attack: Practical attack,
assumes the attacker can collect power/EM traces
corresponding to each ciphertext.

Useful to attack well-designed hardware crypto
Implementations with HD models

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 21



Background Side-Channel Attacks Countermeasures Remarks

Non-Profiled SCA: CPA (and CEMA)

 Correlational Power Analysis (CPA) Attack:

 Step 1: Identify point of attack — usually 15t round S-box output
for AES-128/256 with chosen PT attack (or, the last round HD
attack based on CT).

« Step 2: Choose HW or HD model depending on the platform
for attack. Eg. HW model for software AES.

« Step 3: Make a guess for key byte. Repeat for all 256 key
guesses (0 to 255 for each key byte).

« Step 4. Compute HW of data transition for each PT value.

« Step 5: Compute correlation coefficient between the HW
matrix and the power traces.

 Step 6: Repeat for all 16 key bytes to recover the AES-128 key

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 22
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Non-Profiled SCA: CPA (and CEMA)

pur | * Collect power traces (T).

| AES of DUT |

, Input
" Text

1 Text

- Build a power hypothesis (H).

e Correlate the measured &

Power Pin ||/ =
—— AL, expected traces.

Download Cov (T, H ) p: Correlation co-efficien
SCData__3& ' PrH = o: Standard Deviation
HW p ) Oor * O
T H  Cov: Covariance
CPA ey
\WWMN i * More Traces -> Better

b4
—

Peak Correlation

chance of finding key

Osculoscope

[DMN+18]

0 10K 20K 30K 40K 50K
Traces Analyzed
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Power Analysis Attacks

Power Supply
®

IA
I‘

RI

le

<

Current
Measurement

®<— Point to Probe

Cryptographic
Device

SPARC Lab, ECE, Purdue

 First attack demonstrated by
Kocher et al. in 1998.

« Simple  Power  Analysis
(SPA) and Differential Power

Analysis (DPA) used to
break DES.

B
hy
L]

[KJJ98]

24 3 40 Af g4 72 80

urrent (mA)

[
- By
[+

C

2.75

[v] a8 16 2 : 48
Time (mS)

Figure 1: SPA trace showing an entire DES operation,
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Electromagnetic Analysis Attacks

« A magnetic/electric field
probe Is used to scan
the chip and record EM

Controlling PC

traces.
Trigger (— |
Near-fﬁ‘ eld gmctless
Probe Smartcard
N
S  For attack, use DEMA/
:’\nalogue ] CEMA tO recover the
reprocessing
secret key.
[KOPO9]

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 2
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Power and EM SCA Attacks: History

SPA/DPA Template Attacks ML SCA
1998 2002 2011
Kochelr et al. Chari et al. HospO(ljar et al.
' >
| |
SEMA/DEMA CPA

Quisquater et al. 2004
2001 Brier et al.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 26



Laboratory Set-up for CEMA attack

A ————

_M%-.. i‘

| e @scﬂlﬁsd&pe
T.r:lfjd fV'!/.rJJTV,rI;J/ ,ls/ . | .
AES_Sggnature Leaka

| e
> ——

PC: CEMA
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Background Side-Channel Attacks

Countermeasures

Remarks

CEMA on AES-128 (8-bit microcontroller)

EM Trace Capture
]
= 0
[&]
2
S
] -0.1 |
X
©
(<5}
-
S 02 |
w
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 i 2.2 2.4 2.6 2.8 3
Time Samples (Kpts)
Minimum Traces to Disclosure: 16 Key Bytes

1
.EE 0.8
o
©
© 0.6
S
1
63 0.4
R4
S o2
[a

0

600 800

1000

1200 1400 1600 1800 2000

Traces Analyzed

« EM probe used to break all the 16 key bytes of the software AES
running on an Atmega microcontroller within <1K traces (MTD).

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 2s



Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ][ White-Box Root- ]

Signature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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SCNIFFER: Automated Intelligent EM Sniffing

N
3-D Scanner

e ~—

H-field Probe

Chipwhisperer 5
Capture Board =

. H-field Probe |

Chipwhisperer

Capture Board

Microcontroller
.. under attack

 Automated low-cost end-to-end
| Fooes Framework for efficient EM

Microcontroller Side-Channel SNIFFing &

under attack R Side-Channel Attack

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 30
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SCNIFFER: Low-cost EM Attack Setup

Scanner Amplifier

Picture

Cost

SCNIFFER
Specifications

Riscure EM Probe 2.5 um - 1mm?2
Station
Specifications

Cost: <$300 compared to ~$50,000

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech a1
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Heat Maps

a) AES128: Signal Amplitude Heatmap

X

LI NN NI NN bt ot b et

COLE00 NI LD LUNIIdCOLII00 100 U LIS e LO 00 I OY LD LR bt

0, 30

SPARC Lab, ECE, Purdue

g 30, 30

apnyiidwy

MTD - TVLA — Amplitude Comparison

a) TVLA b) Signal Amplitude

1
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SCNIFFER: TVLA-Based EM Sniffing
AES TVLA Heatma
| EE— __ P - TVLA: 2 sets of traces
2 = collected: fixed PT (f) and
4
2 I B 120 random PT (7).
é 118
17 w ©* TVLA= Hr /~‘f2
12 [5 2 o
13 . i 9r + _f
]l.g ] 14< nr nf
> 16 Q
%g ] 12%
%@ 10+ TVLA < 4.5: traces do not have
22 g data-dependent leakage.
58
%9 O] ] - 6 1
28 = = e TVLA x—
29 [ 4 SNR
30
HHHHHHHHHH ANANANANANANANANANANM 1
Y « MTD o —;
SNR

* TVLA requires much lower number of traces than CEMA at each point.

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 33
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SCNIFFER: Finding Point of Max Leakage

« Gradient descent heuristic to converge to the best point of leakage
on an N x N chip within N iterations.

Effect of Scan Resolution

0.95
(<)}
5
=
=
S 09+ [
c
<
o I |
QD 0.85¢;
(& ]
(7]
£ 1 | . |
S osl P Convergesin | —10 x 10| -
E 1|l O(N) 1 —6—30 x 30
g [ : Measurements: —+—60 x 60
0.75 L ' ' '
0 20 40 60 80 100

Number of Amplitude Measurements
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SCNIFFER Attack Comparison

Number of Traces Analyzed vs. SNR

—

o
-
o

—e—Exhaustive Search
—+— Amplitude Only Based Search
—»—TVLA Only Based Search

—

o
=]
1

~100x Reduction
in Traces to Attack

Number of Traces Analyzed

E -
10

Necn = (10% N) + k ]

AINSCN —amp — ( it ) L 0 * S.\‘vRi

1
NscN—tvla = N * co * m e SN R?
AT — N2 3
10% Neah = N"x k1 * 5 ! : .
- 40 20 0 20

Signal-to-noise Ratio (SNR) (dB)
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SCNIFFER Demo

SCNIFFER: Context-Aware Intelligent
EM Side-Channel Sniffing

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech ss
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SCNIFFER Attack Comparison
a) Path Taken by SCNIFFER: Case 1
:
3
g 0.95
g
1§ o
‘ Initial Gradient Convergence Total 12 b
Case Search Search Location MTD Traces 1 o 13
alvi - g
1 Amplitude  Amplitude (7, 1) 1713 1793 8 R
2 TVLA TVLA (2,2) 223 5847 éé & i 0.75
3 TVLA Amplitude (4, 2) 358 2488 2 M
4 Amplitude  TVLA (8,2) >5000  >14,640 22
29
30
TABLE II: Comparison of different combinations of TVLA TR AR ARRARAR
and amplitude used with SCNIFFER. The total traces includes ®) _ Path Taken by SCNIFFER: Cases 2 and 3
the traces needed for the initial search, gradient search, and
CEMA. 7
“Amplitude based search provides faster convergence, but ¥ -
gives no guarantees that the location found is not a location E 5
f . . = (0]
without information leakage as TVLA does. it
20
=

SPARC Lab, ECE, Purdue

NSO~ NN T NONOHO—N® < DW MO mO
FFFFFFFFFF NN NN NN DN N N ™D

ICSRL, ECE, Georgia Tech




Q&A
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Non-Profiled and Profiled attacks

» Direct attack on a target device

using HW/HD leakage model.
EI\/I/_POWGI‘ * Eg. Differential/Correlational
Analysis Attacks power analysis (DPA/CPA).
* Profiled SCA attack:
« Build offline template using an

identical device

Non-Profiled Profiled « Perform attack on a similar
Attacks device with fewer traces (more
Attacks powerful attack).

« Eg. Statistical template attacks,
machine learning based
attacks.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 39
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Countermeasures Remarks

Profiled attack

Captured EM/Power Trace
EM
r Known N Known  power pin=~Radiation
Secret Value Trace Plaintext,
0x00  AAMANN Keybyte \\

o
OxFF ' b V NN Plaintext

Profiling

Build Template/
Train a Classifier

Y

C p ur d EM/Power Trace

Built Template/
Trained Classifier

Secret Value e o
/ OxA8 Tar get DeV|ce

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 40
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Literature Review of Profiled Attacks

Profiled Attack Scenario m Corresponding Articles

Gaussian Template Attack [CRR02], [RO04], [OM07]

Support Vector Machine  [BL12], [HZ12], [LBM14], [LBM15]

Same-device Attack Random Forest [LBM14]
Neural Networks [MHM13], [GHO15], [MPP16],
[MDM16], [CDP17], [BPS+18]
Cross-device Attack Gaussian Template Attack [RSV+11], [MBT+13], [HOT+14],
[OK18]
Neural Networks [DGD+19],[CCC+19], [GDD+19]

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech
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Gaussian Distribution based Template Attack

» First elaborated in [CRRO02]
« During profiling phase, leakage vectors (traces) are recorded

« Sample mean vector (X;) and sample covariance matrix (S;) for each possible
intermediate (secret) value (k) can estimate true mean and true covariance for
sufficient number of leakage vectors.

 As side-channel leakage traces can generally be modeled well by a
multivariate normal distribution, sample mean and sample covariance matrix
completely define underlying probability distribution of leakage vector x by:

1 1 = va—l1 =
f(x|k) = ce 2 (X=Xk) S (X=X
V21" Sk
* In the attack phase, using each recorded trace, x;,a discriminant score, D (k|x;)

IS computed for each possible k (derived from Bayes’ rule), where P(k) = a-
priori probability of the secret value, k:

D(k [x;) = f(xi | k)P (k)
« By ordering the discriminant scores for each k, we find the correct secret value.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 42
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Numerical Problems in Template based Attack and Solutions

 Number of leakage traces per candidate value should be greater than
the number of dimensions per trace so that sample covariance matrix
IS non-singular [OK18], due to some samples being highly correlated.

» Using pooled Covariance matrix [OK18] instead of separate covariance
matrices for each candidate value provides a better estimate and
satisfies the above criteria easily

« Selection of Samples (Points of Interest — Pol) by Difference of Means
(DOM), Sum of Squared Differences (SOSD), Signal-to-Noise ratio
(SNR) helps reduce the number of samples per trace

 Reducing the number of dimensions using Principal Component
Analysis (PCA) or Fisher's Linear Discriminant Analysis (LDA) also
Improves the performance of template attack

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 43



Background Side-Channel Attacks Countermeasures Remarks

Neural Network based Profiled Attack

Biasunis () (O, () 1D Conv 1D Conv
\ (1x60) (1x60)
o
Max Pooling
Izput Layer .. :~ (133)
o > . N = FullyConnected
= = | e
- - [].--"..-°
5 = i a
o o
E ":'_; "0
O L L =
Multi-Layer Perceptron (MLP) 1-D Convolutional Neural Network (CNN)

Typical Deep Neural Network Architectures Employed [GDD+19]

Number of layers and/or filters of MLP and 1-D CNN architectures depend on
target platforms, and can be optimized using grid-search approach.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 44
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DNNs vs Gaussian Template Attacks

* Deep Neural Network based profiling attacks have several
key advantages to the classical statistical template attacks:

* Does not require a precise selection of Points of Interests (Pols)
* DNNs can handle large dimensions

« Convolutional NNs can handle trace misalignment up to a certain
degree.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech s
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Background Side-Channel Attacks Countermeasures

CNN with Data Augmentation

r-T T-T
: - : \/\_/’\/\/\/

Shifting Window /r\ rﬂ\ I'/\ Original trace

= [ .'f \ |f
A NV
N\ \ \

Deforming trace via AR technigque

ARy . .,
[\ V / \
VT T e o

.L Samples
Augmented trace

0

Data Augmentation Techniques- Left: Shifting, Right: Add-Remove [CDP17]

« Data Augmentation reduces overfitting of CNN to training data
« Two data augmentation techniques were proposed in [CDP17]. (1)
Shifting time samples, (2) Inserting and suppressing time samples, all

chosen uniformly at random
« Data Augmentation helps achieve CNN better performance in the

presence of jitter/misalignment based countermeasures

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 46



Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ][ White-Box Root- ]

Signature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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Practical Issues with Profiled SCA

* Inherent Assumption in Profiled SCA Is that the
leakage profile of identical hardware running the
same piece of software should be the same

* |In reality, such assumption should be tested as
works ([RSV+11], [MBT+13], [HOT+14], [OK18],
IDGD+19], [GDD+19]) Investigating Cross-
Device attack using various profiling techniques
showed that device to device variations can
cause templates/classifiers to be biased towards
the leakage profile of profiling device.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 4s
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Practical Issues with Profiled SCA

« Sample Distribution of power

consumption at a particular time instant ol o |
is different for different devices of . _
identical implementations, even with ol N, >
time-synchronized measurements. S 023 %

_{ag) 0.24 |

- Standard  deviation  of  power £°* % H T

consumption at any instant for the |l 2 T [ 1 l¢ oo o
same key byte but from different ozl o o
devices can be much larger than that oz} o
for different key bytes from the same TReTeerooREISREEE P ERANNINNNRRS
device.

[GDD+19]

« These factors lead to high accuracy for
test traces from the same device, but
low accuracy for traces from a different
one.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech a9
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DNN Performance in Cross-Device Attack

100%

100% 1
{fseata :
2 190% 4 190%
2 3
2 180% l 1 80%
9 9
]](1) I 4 70% 19 170%
|| 12
.8 %‘% 213
3 14 60% > 14 60%
o 1R S 18
17 50%. B 17 50%
S s
20 20 o
51 40% %‘% 40%
22
23 30% % 30%
% 20% 2 20%
29 29
30 10% 30 10%
TNOTODOMROODO~NMNMTLONMNOOIO~NNITNONODDO TANMTOLOMNODO~NMTNONMNONO T~ ANNITOONODNO
\—F\—F!I—I\—F\—\—?—NNNNNNNNNNU) rrrrrrrrrr ANNNANNNANNNANM
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Multi-Layer Perceptron (MLP) 1-D Convolutional Neural Network (CNN)

Performance of MLP and 1-D CNN after training with data from one device [GDD+19]

Performance of MLP and 1-D CNN is good for traces from same device, but
poor for traces from a different device
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DNN Performance in Cross-Device Attack

Rationale behind poor test accuracy:

0O e e e s e s s B s s s S B B B

- Assuming an approximate Gaussian
distribution, for all the devices, the
trace samples of averaged trace for a
particular device should have 99.7%
of the samples within 3 standard
deviation (o) around the mean of
averaged trace across all devices.

90 - ®
80
70 -
60
50
40 -
30

20 |

Number of samples outside 3-0 around mean

101

o
OO o< O OO0 O

- Device 18 certainly is an outlier, FEr oS e s S BRAARAR
which explains why Device 18 had
poor test accuracy when the MLP [GDD+19]
was trained with traces from other
devices and vice versa.

mmemmm?mmmeT (P mmmmmmm?l
S-S o
N
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Multi-Device Training: Improving Cross-Device
Attacks

Rationale behind Multi-Device Training:

-0.2

- Assuming an approximate bivariate § Device 1-30, Device 1.4
. . . . — -0.21 keybyte 0x00 '
Gaussian distribution of two most g " evbyte Ox keybyte 0x00
informative leakage samples, we see %_0'23
that, traces from a single devices fora & .
fixed | keybyte (0x00) | _canpot o 025
approximate the whole distribution 2 . )
ol i g' Device 1,
(comprising 30 devices) well. < 027 evbyte X0 \ _
()] —
s -0.28 N\
. . ® -0.29 Device 1,
- As number of devices increases to 4, = | keybyte 0x01
I I -0.3 -0.29 -0.28-0.27-0.26 -0.25 -0.24-0.23 -0.22 -0.21 -0.2
the alpprOXIIT:JatlI:)(?If.'lt ge;S b(i[ter,fas t‘_:he Measured Amplitude of Sample #96 (A.U.)
sample probability density function
(PDF) approximates the total PDF [GDD+19]
better.
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Effect of Multi-Device Training on Cross-Device Attack
Performance of MLP
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Training Device Group
(b)
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TNOTOORORorunYRer2g INRIRRNRRR

Training Device
(@)

r

= oo

st

Test Device

I AR RN PR b & bttt
Test Device

[
=1

L PP PP Pl o e e b
[
=
Ed

=t

(=]

IIH
—
_|' -
=

f—

1 1 10%
Gl G2 G3 G4 G5 G6 G7T G8 GI G100 G1 G2 G3 G4 G5 G6 G7
Training D{s;{ice Group Training D{%’ice Group

Performance of MLP after training with (a) 1 (b) 2 (c) 3 (d) 4 devices [GDD+19]

£ oo

Test Accuracy of MLP improves with Multi-Device Training due
to better leakage modeling.
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Effect of Multi-Device Training on Cross-Device Attack
Performance of CNN

——100% ) 100%

90%

180%

170%

60%

50% 50%

TestDevice

COMRIPIMIPIMIPIPIPI PIA) 22 3 B h kA

Test Device
[T T S W R W G i

40% 40%

30% 30%

G ERWRN =000 ~OU & W =0 OO~IO M Wh =

20% 20%

OWO~DHNHWN 2O W ~NDON R WSO~ DUR WA=

10%

G1 G2 G3 G4 G5 G6 G7
Training Device Training Device
b

(a)
Performance of CNN after training with (a) 1 (b) 4devices [GDD+19]

Test Accuracy of CNN improves with Multi-Device Training due
to better leakage modeling.
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PCA-MLP Performance in Cross-Device Attack

100 - - 1 - = 31%0%
trace; t11 t12 L. tin % - 1T ‘_1’7 100%
trace; ta1 ta2 - ton 90 1 ,; 90% 2
Traces = . =1 . . ) . g g 99%
) : ) ' : 7 4 80% 6 98%
traceMJ [tMl tm2 ... tan 80 8 ' I
9 8 .
_ F 10 1. ] 97%
=t & ... t £70 i 0% 10
>
3 80 814 ; B 60% i .
TraceSagjust = [tl — mean(t1) t— mean(t) ... tn— mean(tm}] & 315 T 95%
@ o186 16 [_98.92
Covariance matrix, C = cov( Traces) = cov( [tl t ... t.v\,-}) & 50 2 17 509 17 [ 9985 94%
@ 318 18 |_agsr
< - 19 B = 19
cov(ty, i) cov(ty, ta) ... cov(ty,ty) § a0 20 o D 93%
> 21 o
_ cov(ty, 1) cov(ta, t2) ... cov(ty, ty) < 55 g% 1%0 929
, A . : 30 24 0% 95 aees
2 % 1%
COV(I‘N, t1} COV(tN, tz) e COV(tN, tN) 26 * i * 27 [ _s0.85
20 27 20% 28 99.9 90%
28 ° 29 [ en.a1
vV = [V1 7 S VN] %g ; i _7._-77__:__39_ _99.78
0 . L N T 10% cé
— T . ThT 500 1000 1500 2000 2500 3000 G1 G2 G3 G4 G5 G6 G7
Tracesm = (V,-,., x Tracesﬂfﬂuﬁ ) Number of Principal Compaonents Training Device Group

(a)

(@) Accuracy vs. Number of principal components used in training
(b) Performance of MLP with PCA and multi-device training
[GDD+19]

Principal Component Analysis (PCA)

With 4 training devices and PCA based Pre-processing, average test accuracy
across all devices reaches ~99.51% and test accuracy remains above ~90%.
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Dynamic Time Warping (DTW) as pre-processing for PCA-MLP
for misaligned traces

H Hl

i MIM’, ,[ i "/l il

P
—
T— it
RE— b
e
———
—

Amplitude

———
——————
 —
—_—— —
e

| | , 015}
I ‘ ’ . ! ’ J 02}
0.25 ’ " : -0.25 l
) 03f 1 03 1
EEVK ]
035 - 3 : - . A . . 4 0.35 : : : : - . L . L
41 ® 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Trace S(aar;\ple # Trace ?g;nple #
Warp Path in DTW (a) Misaligned traces (b) Realigned traces using DTW [GDD+19]

Rationale behind use of DTW:

- Traces can be misaligned due to faulty triggering and/or countermeasures
implemented

- PCA and MLP require realigned traces. DTW can realign them my stretching
traces so as to minimize Euclidean distance between them.
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Summary of DTW-PCA-MLP [GDD+19]

Number of Test Accuracy (%)
Training Devices MLP PCA - MLP CNN
Average Maximum  Minimum  Average Maximum  Minimum  Average Maximum  Minimum
1 61.98 98.70 295 90.09 99.94 53.18 29.97 44.86 10.09
2 79.14 99.92 447 96.65 99.99 71.28 47.75 7442 2127
3 90.76 99.93 99 99.99 3 (Y 98.93 5
4 91.7 99.95 99.99 94.63 @
*Does not include Test Accyracy for ices used in Trainj

Progressive Improvement ~ ~8-20% improvement in An order of magnitude ~30% better accuracy with

with Multi-Device Training average accuracy with improvement in minimum PCA-MLP than CNN based
Compared to Single- PCA-MLP accuracy with PCA-MLP approach

Device Training compared to MLP

Training Set  Test Set TestAccuracy(%)
DTW-PCA-MLP CNN DTW-CNN DTW-PCA-CNN
MI1-M4 M5 99.80 87.05 88.91 89.63
MI1-M3.M5 M4 99.71 88.37 95.53 93.22
MI1-M3,M4-M5 M3 99.69 88.72 92.64 90.16
MI1,M3-M5 M2 99.94 78.98 9241 95.66
M2-M5 M1 98.86 80.61 92.44 95.40

N

High accuracy of DTW-PCA-MLP on average compared to CNN based approaches for misalighed traces
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SCA Countermeasures

Logical Architectural Physical
« SABL  Random Insertion | * Noise Injection
of operations
« WDDL « Switched
 Shuffling of Capacitor
: ti
« Gate-level Masking Operations
* VR
« Software Masking
« ASNI
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Logic Level Countermeasures

« Sticking to the same architecture, the focus is on designing DPA resistant logic
styles which consume equal power in each clock cycle.
« Two approaches:
« Designing entirely new dual-rail logic cells (due to high customizability), or

« Using single-rail cells available in Standard Cell libraries (due to reduced design
effort).

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech e2
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Basics of Logic Level Countermeasure: Dual Rail Precharge
(DRP) Logic Style

« Combination of Dual Rail Logic (input and output signals are carried on
complimentary wires) and Precharge Logic (sighals set to a predefined
precharge value before evaluation)

« In DRP cells, always one of the outputs (either original output or its
complemented version) transitions, making power consumption of the cells
constant.

« DRP flip-flops consist of two stages, so as to provide stored values in Stage 2
to combinational DRP cells during precharge phase of Stage 1, and to store
outputs of combinational values in Stage 1 before precharge phase of Stage 2,
thus preventing data loss.

DRP flip-flops

DRP combinational
circuit

a
a L
SR cell —— |:') DR cell 4
a b —q r/
b

Stage 1
Stage 2

DRP Logic style [MOPO7]
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DRP Logic Style: Tricks to ensure constant power
consumption

* Need to balance the capacitances at the complimentary outputs of a DRP cell

« Balancing the complimentary outputs: Dominating factor in modern process
technologies is the interconnect capacitance (than input or output capacitance
of cells) which should be done during place and route.

« Balancing the internal power consumption: Internal power consumption of
DRP cells should be made constant by charging or discharging all internal
nodes in each clock cycle.

— q a _

8~ L T 1~ 3

N Cq-.ﬂ—_l_ Icqnﬂ-' —_I_'Cmi y
- L 1~ 1~
{*'q-uI ‘_E(ﬁw I Cai

Balancing the complimentary outputs [MOPO07]
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Logic Level Hiding: Sense Amplifier Based Logic (SABL)

« SABL achieves uniform power consumption by:

« Employing a Dynamic and Differential Logic
style and therefore having exactly one
switching event per cycle

« Making Time of Evaluation data independent
(cells evaluate after all signals are set to
complementary values)

« Making the four output transitions (0-0, 0-1,
1-0, 1-1) equal by charging/discharging
constant load capacitance: one of the
balanced output load capacitances together
with  the sum of all internal node
capacitances.

 Requires design and characterization of
complete new standard cell library.

* Area requirement doubles compared to CMOS
counterpart.

| _1
c]kA{ | d :”{Fclk
OUT = 1 OuT
- |
I vbp I
T
I M; |
m; !
i, | i
. DPDN
My,

I°“#Q .

Sense Amplifier Based
Logic (SABL) [TAV02]

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech



Background Side-Channel Attacks Countermeasures Remarks

Logic Level Hiding: Wave Dynamic Differential Logic (WDDL)

- Built based on Single Rail AND and a —AND gate (A-B)-prch & (A+8).preh
OR cells (used to implement original B__)—:}z AIB|A B |pren 2|2
and complemented version of a logic A 00T p oo
function) which can be found in ED{D_E 1lofol1to ol
Standard Cell Library preh X xIx[x][1]olo

« Combinational WDDL gates do not pre- Simple Dynamic Differential Logic
charge simultaneously. The pre- (SDDL) [TV04]
charged 0's ripple through the Precharge | (TAND gat )

Master-Slave
DDL Register

Inputs

3

combinational logic, therefore there is a
pre-charge wave (hence the name).

« Under the assumption that the
differential signals travel in the same prch :Oge_ - o
environment, the interconnect ' M\
capacitance are equivalent, which T oo\ eva. [ 1 Encryption
ensures the total capacitance to be AN /
charged is of constant value. Wave Dynamic Differential

 Can be realized in FPGAs. Logic (WDDL) [TVO04]

A
clk! clk!

y

prch
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Logic Level Hiding: Bridge Boost Logic (BBL)

A logic style which uses a bridge
transistor to equalize currents in the
evaluation stage.

23 8 b —
» Bridge transistor shorts the PUN and —t* ™ 5™ }: Nk

Positive Phase Gate Negative Phase Gate

PDN on the opposite sides of the N b it
evaluation stage to conduct the same « =, e S e
current regardless of the previous :

:
o

St ate pr w0 afo sas0 51,00 5200 T(ns)
- \

« At the end of evaluation phase, the /\_,/\/\.J/\/\ f.:;;

bridging transistor makes sure that the .= ==
voltage difference between the

complementary outputs is always the Bridge Boost Logic
same, enabling Boost stage to boost it (BBL) [LZP15]

up to the same level of the clock

signal.

PC_b PChb PC

il i
(P PCh PC PC
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Logic Level Masking: Masked Dual-Rail Pre-charge Logic

(MDPL)
« Uses masking at the gate level : Al Lo
* Avoids glitches in the circuit by Dual- m e
Rail Pre-charge a0
- Can be built from Standard Cell R G I

Libraries as outputs of MDPL AND
Gate can be calculated by Majority Line no. b
(MAJ) gate (available in Standard Cell
Libraries), and all other combinational
MDPL gates are based on this one

« Every signal is masked with the same

=
3
o
3
3
=
3
o
3

—

DODO»—»—»—-»—?l
ororlor o7
DDDD—‘DI—‘)—'I—‘?'

[ e e ] [ R T s B

—— O Ol = O O
= o = OoOl= O ~=O
=== Ol=O o O
o O = H=lOo O =

00 =1 @ U= W

mask Masked Dual-Rail Pre-
» Pre-charge wave is similar to WDDL Charge Logic (MDPL)
AND Gate [PMO5],
[PKZ+07]
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Architecture Level Hiding Countermeasure for Software
Implementations

 The power consumption characteristics is defined by the underlying
hardware

* Introducing Time Distortion:

« Can be done only by random insertion of dummy operations or by
shuffling of operations

» Does not provide high level of protection
* Introducing Amplitude Distortion:

« By choosing instructions with lowest leakage, avoiding conditional

jumps or usage of memory addresses depending on key, and thus
reducing amplitude of leakage

« By performing activities parallel to the execution of cryptographic
algorithm

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech e9
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Architectural Countermeasure: Time Distortion

 Random Insertion of Dummy Operations:

« Dummy operations (not present in actual
algorithm) are performed at random
times, keeping the total execution time - Constant Exceuion Time -
constant. Operation 1 Operation Operation 2

« Affects the throughput.

Amplitude
2y % '

« Shuffling of Operations:

 Independent operations such as, 16 AES
S-box lookups for AES-128 can be
performed in arbitrary order.

Operation 1 Operation 2

Amplitude
> _

Time

« Does not affect throughput as much.

« Number of operations that can be
shuffled are limited depending on the
algorithm and the architecture of the
Implementation.

Constant Execution Time

|

Y

Operation 2 Operation 1

:

-
Time
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Architectural Countermeasure: Time Distortion

« Skipping of Clock Pulses:

« RNGs are used to randomly skip
clock pulses

« Randomly Changing Clock
Frequency:

 Internal oscillator based on RNG
controls the operating frequency of
the clock signal

« Multiple Clock Domains:

* Randomly switching between
several clock signals generated on
the device

Clock |
-4 - - - - - -
Compute
A pu A A Compute Compute
RNG Skipped Cycles
Clock ‘ ‘ ‘ ‘ ‘ \ HH
RNG

Clock 1 ’

Crypto-
Processor

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 71
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Architecture Level Hiding: Random Order Execution

* AddRoundKey, SubBytes  and

ShiftRows are performed at byte (= e ‘:a: i
level \ E |
RNG Roun d\

« 16 bytes of a state can be e b e
independently processed by these e ;Ea ol -
operations LD T -

« Although  MixColumns involves i ol
linear multiplications between o
columns of a state and a constant = -

matrix, it can be decomposed into a
set of Independent byte-grained
multiplication and additions Random Order Execution

_ _ [BXC+12]
« 16-byte grained operations can be
executed in any order.
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Architecture Level Masking: for Software Implementations

* Boolean Masking for linear operations:

* Intermediate values can easily be masked, and masks can be
removed at the end of computation

» Masking Table Look-Ups for non-linear operations:

« Block ciphers allow implementing non-linear operations as table
look-ups

» Look-Up Tables need to store masked values of actual intermediate
value for masked intermediate values, such that the mask can be
removed by an exclusive-OR operation later on.

 Random Pre-charging:

« To prevent Hamming Distance (HD)-based leakage, loading or
storing a random value before the actual intermediate value
changes leakage profile

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 73
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Architecture Level Masking: for Hardware Implementations

Boolean Masking
Masking Multipliers
Random Pre-charging:

« By using duplicate registers (by doubling original
number of registers) such that on each clock cycle one
set of registers contain random values

Masking Buses:

« By using duplicate registers (by doubling original
number of registers) such that on each clock cycle one
set of registers contain random values

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 74
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Physical Countermeasures

 Noise Injection: High power/area overheads.

« Switched Capacitor Current Equalizer: Supply Current Equalization
[4]; 2x performance degradation.

« Supply regulation-based: LDO-based - security by obfuscating the
performance parameters [5], buck converter-based [6] — embedded
passives.

* An ideal LDO-based implementation is inherently insecure.

* IVR: High area overheads, may not be suited for IoT devices or
microcontrollers.

« STELLAR: Generic low-overhead technique to prevent both power
and EM SCA attacks
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Physical Countermeasure: Random Fast Voltage Dithering

(RFVD)

« High-frequency, high-bandwidth Hleh Leskaget - Protected:
IVR (Integrated Voltage . reoorms| "Cho | K=
Regulator) is used to dither the B choru R Ta
voltage around the target level by B Fematto Ercryph

. . {ﬂ} ngin
randomly assign a different
. Reduced Leakage! Protected
voltage for each encryption — Vi
. . . ntegrate N © el
(Amplitude distortion) S — ¢ KT 1s
I—'""“) witl;LR g Tz
.. I":{';’:;‘:d E“""’!’““‘.' PACKAGE
« ADCM (All-Digital Clock (VD)
Modulation) circuit transforms gl
{h) 3 ADCM

voltage variations to dithering of
the CIO_Ck edge_s to ensgre cqrrgct Random Fast Voltage Dithering
operation while creating timing [SKM+18]

randomness (Time distortion)
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Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ][ White-Box Root- ]

Signature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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ASNI: Signature Suppression

Traditional AES ASNI-AES Overhead Comparison
2 _ 2 2
Full AES current F;}vﬂer Attenuated AES P;‘_V:r On, = AF” * ON,
signature P current signature I Int
e Iy, =— K1
d Ligs+ Tsan N2 VAF < N1
4 Laes
Signature I | Ovq I
Attenuating ov,~ — <L gy
AES l Ing |Hardware (SAH I = [AF 1
Engine AES l N2
Engine IAESm:g =18.89mA
1 T T T T T
5 os — In
1 NP GND B —_ Ino
= = ®os
o
Iovi = Ina Iovz = Inz + Isan O o4
1 s
Cov (T, H) AF * CO'D(T, H) n? 0.2
Pr'g, = » » Pry, =
or + ONn, *OH \/F * 0'% + di,z x Oy Do 10 20 30 40 50 80 70 80
Noise Overhead (mA)
*HOST Best Student Paper 2017,
[DMN+18] P

TCAS-1 2018
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Goal: Signature Attenuation to resist SCA

How can we achieve a supply
current independent of the crypto
current?

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech so
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SAH: Signature Attenuation Hardware

Power
I Pin__
| Ies = Lags.. + Iptee . .
O e T \ - Practical CS: biased
| PMOS.
. ShuntLDO

i | _<LV‘“"9‘"‘: c i « Shunt LDO loop with
! P L-ted 1 the NMOS bleed
P s . regulates V..

1 _Bleed | 1 |

o o ______ T _G_N_D___________J
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SAH: Variation-tolerance

Power

mom oo I——Biﬂ——————————ﬂl - Digital (SMC) loop
i fes = 1aESug +Ilée§d l’ Digital | engages to
| [o—{ Control | compensate any slow

SMC loo | . . .
R A ( p’—‘ ' variations like
I + :
- _Q_erget: Vi, : frequency, T, process.
i : : CLoad i
L "1 oy |

1| XAES l ]

- Bleed”: | .« Normal Operation:
BEEEEEE - | Only the shunt LDO
B it o G —N])“"—"—"—" regulates.
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SAH: Analog Shunt LDO Loop

* Now, with loop regulation,
Vieg = Viarget

* IS I.s Independent of 1,5s??

Effect of output resistance on supply current variation
CS -[CS i
-I , Fas ]

100 | . | |
10' 102 10° 104 10° 108 107
OQutput resistance ry_ (chms)

Supply current variation (A)
o
&
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System-level simulations of the SAH

Simulation Waveforms of the SAH

E _ i T T T T T ]
L e -
258 \/\/\W/\/\/\/\/\/\/\/\  Average Droop In output
0 , : ‘ ‘
0.:;6.2 16.I25 1el.3 16.I35 16;4 15.:15 16.5 Voltage VregN 10 mV.
L oo 0.2 b
m 5 é 0 1 1 1 1 1
16.2 16.25 16.3 16.35 16.4 16.45 165
gx ‘ | | n| >200X AES
; SE Al Signature
5 - - -362 16‘25 16‘3 16‘35 16‘4 16‘45 Attenuation
TH_ :
EEo NN N NS T T T
5 E < 0.98 T . .

g 0'9:55.2 16‘.25 1(;.3 15f35 11;.4 16!45 16.5 ¢ FI n Ite rds refl eCtS th e
232" j relative changes of 1., at
& = E
237 . | | . . the supply current.

Time (psec)
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Signature Attenuation Hardware (SAH)

;I_ o » Signature Attenuation

i, © dldi i .

" Ics = ags,,, 1 Ibleed | _lerypto

| ! CS J' Digital : AT = — X wCLoadroutCS

: b— Control : lCS

| ShuntLDO (SMC loop) —‘ |

L T I : |

o £

L —<i, ! \Y% | o2 o2

i | ta‘rget: res e MTD > — _ZN 2 & 2
— |

o | Maes i < AT?

' Bleed l |

| -

|

-
I —_—
| |
|
| |
| |
|
' |
| |
' |
| N
| | |
| |
|
|
|
|
—®

a}

S

|

|
AES

Current

(mA)

|

Supply
Current

1 1 | 1 1
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Background Side-Channel Attacks Countermeasures Remarks

ASNI: Attenuated Signature Noise Injection

Power
—————————— - |
| Ics = I4gs,,, t Ibleed :
| CS l . . ..
| P Viias . » Minimal Noise Injection
1 _ShuntLDO _ i
1 _< —1 Lone
: : N Vtargejlt Vreg J' L :
o A .
Ly | | Croad "« Total current overhead =
o I =~ |
| l I | *AES |
| : Bleed': : oy = Ipleea + Iopamp + Inoise
[ _ I
| 3 l
e GND T T
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Background

Side-Channel Attacks

Countermeasures

Remarks

MTD Analysis

Effect of Only Noise addition on traditional AES

~25X improvement in power
overhead for SCA immunity

a)o s Noise Current: 1 mA b) 02 Noise Current: 8 mA C) 0.5 Noise Current: 12 mA d) Noise Current: 17 mA
= : <— MTD Incorrect Keys = : Incorrect Keys = Incorrect Keys c 0.13 Incorrect Keys 1
Lo3h - CorrectKey |1 2315 1 CorrectKey |1 .2 Correct Key 0 Correct Key
K N — I 5 01t [ k]
£, £ | 4= MTD B '«=MTD | £ 1
502Hh 5 01 1 - 5 I - 5 Py, =17%x1
[&] 1 [&] 1 (&) | (4] _
= { = I == 0.05 1 = 0.05 =17mW
S 0.1 S0.05f : | 8 3
o . o ' o | o
ol : : : : 0 - : : : 0 : : . : 0 : : : :
0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K
Traces Analyzed Traces Analyzed Traces Analyzed Traces Analyzed
Effect of Noise addition on modified AES ~25X
e) Noise Current: 0.02 mA f) Noise Current: 0.05 mA ) Noise Current: 0.12 mA h) Noise Current: 0.17 mA
orsh : 19) 0.15 :
1 Incorrect Keys ) 1 Incorrect Keys Incorrect Keys 0.15 Incorrect Keys | 1
50150 ——correct Key 5 ! Correct Key 5 ——correct Key 5 ——cCorrect Key
2 2 1 2 2
5 : k= 01t ! — 5 04f ! i 5
S o.1li s O | €= MID ] 1 €= MID | %5 01 Py, =(14x1.2-1) ]
E 0T MTD = = 1 = ov
s | 3 | 3 008 . 38 =0.68 mWw
[ 1 . 1
o . o | o o
' 1 1
0 : : : : I 0 . : : 0 0 -
0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K
Traces Analyzed Traces Analyzed Traces Analyzed Traces Analyzed
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Background Side-Channel Attacks Countermeasures Remarks

ASNI: MTD > 1M

Noise Current: 720 uA

0.02
S ‘ Incorrect Keys
'ﬁ 0.015 Correct Key
o
5 0.01 &m: 450 pF |
O
S 0.005 —
o

0

200K 400K 600K 800K i
Traces Analyzed

1 mAx1V
1.4mA=1.2V

~60% to achieve MTD > 1M.

« Power efficiency 1N =

« Capacitance for 40MHz operation. Higher f will lower C
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ASNI: Comparison with State-of-the-Art

State-of-the-Art Power SCA Countermeasures:
Overhead Comparison with ASNI

PH: Performance Hit MaSkmg

@ Generic Technique PH ~ 2x
- 4x | O Specific Technique -
5
=
o WDDL
© 3xr PH = 4x 1
o MTD =21K
<
® IVR  PH=1x
=2 MTD =100K
g 2x | O :
i ASNI Switg?{ec:i 2()Eapacitor

1x - PH =1x MTD =10M |
X MTD =1M | |
1x 2x 3x 4x

Relative Power Overhead
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Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ][ White-Box RooOt- ]

Signhature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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Background Side-Channel Attacks Countermeasures Remarks

EM-SC: Black Box Analysis

Side Channel Attack (SCA)

M
Download : : -
SC Data (1) 7
= l

< 0.3 lncorr;ct Key; - n& L -
-‘% . Correct Key E‘TT L 4
o= L Lo ‘ol o ;
go.z gl EX N =
2 0.1 ) mm — @ 1& & ﬂ 8
5 O
T o l Osalloscope

0 10K 20K 30K 40K 50K
Traces Analyzed

« Most EM SC work treat the EM emanation as a Black Box!
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Background Side-Channel Attacks Countermeasures Remarks

EM-SC: White Box Analysis (STELLAR)

Side Channel Attack (SCA)

DUT

A

_| Input
| Text

’

| AES of DUT

- Cipher
Text

M

| EYYYNYYYY

Download
SC Data (T)

A

Incorrect Keys
Correct Key

9
@
{Z
>

=]
-

Peak Correlation

Oscilloscope

o
(=]

10K 20K 30K 40K 50K
Traces Analyzed

White-Box Analysis: What is the source of the EM leakage from an IC?
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Remarks

Countermeasures

Side-Channel Attacks

Background

Maxwell and Accelerating Electrons
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K
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Background Side-Channel Attacks Countermeasures Remarks

Genesis of the EM Leakage

« Crypto engines like AES/SHA/ECC consist of multiple digital gates

Vbb 0 — 1 State Voo
transition R
. > e
I N Charging

—| Load

D) A~ Capl — 0 State
transition . Req
1 i Discharging I

Y
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Background

Side-Channel Attacks

Countermeasures Remarks

Genesis of the EM Leakage

* Crypto engines like AES/SHA/ECC consist of multiple digital gates

VDD

0 — 1 State
transition

Load

; 02E
AV E:,ueWiO

0%H

Discharging

™~ Ca 1 — 0 State vZH: € + 0
P transition . Req I H dt?

State Switching

R - 2
> eq di.(t) d“q )
Charging \ ;g ) _ 7 * 0, — Changing Currents

— Acceleration of charges

E, H fields
propagate
together and EM
fields exist.

Transistor switching creates changing currents leading to EM radiation.

ICSRL, ECE, Georgia Tech o5
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Background Side-Channel Attacks Countermeasures Remarks

Genesis of the EM Leakage

* Crypto engines like AES/SHA/ECC consist of multiple digital gates

Vbp 0 — 1 State Voo
transition itchi
N, R di () dq State SWl'Fchlng
Charging =—#0, — Changing Currents
» dt dt — Acceleration of charges
ViNn — 2 . :
IN VOUT I vZ E = ‘ue—a_E %0 E, H fields
1 dt? propagate
_| Load , = together and EM
) T Capl 0 State U2 = ye 0°H £ 0 fields exist.
transition . Req [\ He Gtz -
1 Discharging I

Transistor switching creates changing currents leading to EM radiation.

But what does the generated EM fields depend on?
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Genesis of the EM Leakage

* Crypto engines like AES/SHA/ECC consist of multiple digital gates

Vbp 0 — 1 State Voo
transition itchi
N, R di () dq State SWl'Fchlng
Charging =—#0, — Changing Currents
» dt dt — Acceleration of charges
ViNn — 2 . :
IN VOUT I vZ E = ‘ue—a_E %0 E, H fields
1 dt? propagate
_| Load , = together and EM
) T Capl 0 State U2 = ye 0°H £ 0 fields exist.
transition . Req [\ He Gtz -
1 Discharging I

Transistor switching creates changing currents leading to EM radiation.

But what does the generated EM fields depend on? Metals carrying the current!
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Background Side-Channel Attacks Countermeasures Remarks

Metal Layers in Intel 32nm

Layer Pitch (nm) Thick (nm) Aspect Ratio
Tsolation 140.0 200 -
Contacted Gate Pitch 1125 35 -
Metal 1 1125 05 1.7
gy | Metal 2 1125 95 17
= Metal 3 1125 95 1.7
" Metal 4 168.8 151 18
' — Metal 5 250 204 18
Metal 6 3376 303 18
M . se B Metal 7 450.1 388 1.7
u IL u ll' l- l l 'II Metal 8 566.5 504 18
TP lml | 1 | Metal 9 19 4um 8um 1.5
Figure 11: Cross-section of interconnect stack (8 layers) Bump 145.9um 25 5pum -

Table 1: Laver pitch, thickness and aspect ratio

Reference: A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced
Channel Strain and 0.171um2 SRAM Cell Size in a 291Mb Array, Intel Corporation

* Interconnect stack dimension, from Intel 32 nm technology

« Simulation performed in ANSYS HFSS

« Goal: Find out how the different metal layers contribute to the radiated
electric field, due to a modulated signal flow through the stacks

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech s
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Simulation Setup

Cu Bump

Reference: A 32nm Logic
Technology Featuring 2nd-
Generation High-k + Metal-Gate
Transistors, Enhanced Channel
Strain and 0.171um2 SRAM Cell
Size in a 291Mb Array, Intel

Metal 9 8um Corporation

SEM image detailing Metal 9 and Cu Bump layers
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Background Side-Channel Attacks Countermeasures Remarks

Ground-Up Root-Cause Analysis

Intel 32nm Metal-Interconnect Stack

A M1 to M, Stack
M8
. . High-Level
Switching g ) thick metals Lower Cell-Level
Activity u 3 metal layers
QE
i DQ
o=
ﬂ m )
Transformation through Frequency Trarl:/gistor ‘
Metal-Interconnect Stack
U « EM leakage from higher
metal layer has higher
EM Fields probability of detection.

[NAB+08]
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Background Side-Channel Attacks Countermeasures Remarks

Metal-Interconnect Stack Modeling

[DNC+19]

10 (um)

 [sometric Projection of the Intel 32nm interconnect stack model for EM
analysis in HFSS.

« Lumped port excitation between the lowest metal layer and the PEC
plate (ground).

« Far-field radiation pattern is analogous to infinitesimal dipole (I << A4).
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Background Side-Channel Attacks Countermeasures Remarks

E-field Contribution of the Metal Stack

a) E-Field Probe Frequency Response b) Detection Threshold of E-Field Probe
-30 T T T T —_— T T T T T J'.r' T T
- 0.040} p - ]
€ 40| {-50dBm @ 1 GHz . 13 D = 900 pm o
@ ol |(E-Field at probe: 1v/m)| | S Mo
2 £ 0.030
= -60 .0
z 5
-70 F
g 2 0.020
-80 } = .
- c Detection threshold of
g 90 ] commercial E-field probes
£ 100l g 0010 - - - - - o e m s
o] 110 ] Lower level metals (M, to Mg)
- [ [
120 , , ! ™ 0000 000 O O o i
0.1 1 10 100 1000 10000 0 100 200 300 400 500 8000
Frequency (MHz) Metal Layer Thickness (nm)
[DNC+19]

At 1GHz operating frequency, detectable E-field for the
state-of-the-art EM probes is 10 mV/m.

e For Intel 32nm, M9 Is vulnherable to EM side-channel
leakages.
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Background Side-Channel Attacks

Countermeasures

Remarks

Ground-Up Root-Cause Analysis

Switching
Activity

J

Transformation through
Metal-Interconnect Stack

J

EM Fields

High-Level
thick metals

Electric Field
(Magnitude)

Lower Cell-Level

metal layers

> * Not pass the Correlated

Frequency
Current through the
high-level metal layers.
External Full Encryption
Supply Pin t Signature
High-Level | | M9
Metal " :
‘/
Crypto
Engine
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Background Side-Channel Attacks

Countermeasures

Remarks

Ground-Up Root-Cause Analysis

Switching
Activity

J

Transformation through
Metal-Interconnect Stack

J

EM Fields

High-Level
thick metals

Electric Field
(Magnitude)

Lower Cell-Level

metal layers

Frequency

»
>

* Not pass the Correlated
Current through the
high-level metal layers.

External Full Encryption

Supply Pin 1 _ Signature
High-Level

Metal ,]:M?(‘

M2 * But how can we achieve
— ML that?
‘/

Crypto
Engine

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 104



Background Side-Channel Attacks Countermeasures

Remarks

Ground-Up Root-Cause Analysis

Power Pin
__I' Higher Metal
Layers

Local Low er
Metal lavers |

Crypto Core |

Power SCA Protection X

EM SCA Protection X
[DNC+19]

« Sensitive sighals can be routed in the
lower metal layers.

« But power has to come from off-chip
components and hence needs to connect
to the external pins through the higher
metal layers.

« How can we restrict correlated power
signatures to the lower metal layers?

SPARC Lab, ECE, Purdue

ICSRL, ECE, Georgia Tech 105
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Ground-Up Root-Cause Analysis

Challenge: Goals:
EM SCA Resistant Design
Switching
Activity Solution: STELLAR * Not pass the Correlated
Signature Attenuation Hardware Current through the
ﬂ (SAH) with Lower Metal Routing high-level metal Iayers
Transformation through _
Metal-Interconnect Stack External Attenuated Techni que:
Supply Pin 1 Signature
Vo TN .-
ﬂ' . » Suppress the critical
correlated signature in
EM Fields e the lower metals before
‘ SAH it reaches the top metal
Crypto
Engine Iayers.
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Overview: New Attacks and Defenses

Attack

[ SCNIFFER: Automated EM ] [ X-DeepSCA: Cross-Device ]

leakage point detection Deep-Learning SCA

Power & Electro-
Magnetic Side-Channel

[ ASNI: Attenuated ][ White-Box Root- ]

Signature Noise Injection Cause Analysis

STELLAR: Generic
EM SCA Tolerance
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Background Side-Channel Attacks Countermeasures Remarks

STELLAR: Basics

1

MTD
SNR?

MTD o —— % AT?
SNR \
Signature

Attenuation
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Background Side-Channel Attacks Countermeasures Remarks

EM White Box Analysis: Countermeasure

« Goalisto
significantly
suppress the crypto

STELLAR: Signature aTtenuation Embedded CRYPTO with Low-Level metAL Routing

» Direction of
current flow

Full Encryption g Attenuated

Metal 9

Slobal Hiah-level Signature Signaturey current in the lower
obal High-leve
Metal Rt level metal layers.
Local High-level 4 Top Layere:
Metal - Vpp. GND, Clk « Suppress Crypto

Signature in higher
metal layers (M9
and above) by
placing a Signature
Attenuation circuit

v
Intermediate Layers:
p— -
Global Interconnects

Local Low-level
Metals

EM Leakage not
detectable by state-

of-the-art EM Cell-level

prob Routing p |)1 Metal 1 f IJJ Metal 1 y embeddlng the
Ly 8 crypto IP within the
SAH lower metal layers.
Crypto IP may include all the Generic
encryption algo;itggé: AES-128, SHA- Countermeasure

[DNC+19]
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Side-Channel Attacks

Countermeasures

Remarks

STELLAR: EM SCA Countermeasure: Simplified View

Correlated
CuBMpsignature

Attenuated

CuBump  giq nature

Local Low Ievel ' =
Metal Routing

STELLAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-cause Analysis

HOST 2019 (Best Student Paper Award )

SPARC Lab, ECE, Purdue
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Background Side-Channel Attacks Countermeasures Remarks

STELLAR: Isolating Higher metals from the Crypto Core

SAH with High-Level

Local Signal Routing in .
a) s g b) Long Metal Routing ¢) STELLAR: Top View

Smart Cards

Power Pin Iiner Pin | Power Pin

.l Higher Metal HH f Higher Metal L ' HmLh:;eT:tal
Layors | Lavers T
Local Lower [ | Local Lower i ! : Local Lower »
| Metal lavers 1 1 Metal layers i Metal layers -
Crypto Core ' _ | Crypto Core .:.. .. E

Power SCA Protection X Power SCA Protection Power SCA Protection v
EM SCA Protection X EM SCA Protection X EM SCA Protection v

[DNC+19]
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STELLAR - E-field Suppression

= 6 mV//m for AES peak current of 3.2 n

Iuynprot
STELLAR: Cross Sectional Side View
Global Higher Metal layer « AT} ppu = —22— ~ 20
MXCrypto
>.< |~ Ileoctgll Il-|igher
clallayers 200x current
STy e a| * ATsipa = —— ~ 200 gci)gncaﬁuree
A : | Local Lower [, . : Global AFsag ,
. ‘r Metal layers . é . attenuation
SAH Cg‘““ SAH |« g _ Eipoeq , Plglobal
ore IsTELLAR AT Local ATglobal
0.25 5.75
=2 + 00 0.04 mV/m
[DNC+19]

150x EM signature
attenuation
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MTD Analysis

CEMA on Baseline AES CEMA on STELLAR-AES
0.2 ' ‘ ‘ ] 0.02
£ ICorrect i(:e(y g ‘ Correct Key
o ncorrect Keys = I tK
E : E 0.015 | ncorrec eys
o : o
S = Intial MTD 5 0.01 P,,=(1.245x1.2 — 1)
g Q =0.49 mW
S 0.05 ® 0.005
o o
2K 4K 6K 8K 10K 200K 400K 600K 800K 1M
Traces Analyzed Traces Analyzed
1.49mW — 1mWw
 Power Overhead = * 100 = 49%.

1mw

Area Overhead ~ 23%

Both Power & EM SCA protection

Generic Technique & can be extended to any crypto IP

No degradation in Performance
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DETECT APPROACHING EM PROBE

- BEFORE IT DETECTS YOUR CRITICAL SIGNAL
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EM Attack Detection: Approaching Probe

1127JLC ” ; w/o Probe
: = - &
‘ 1/21[ (L'A'”)C w/ Probe
: ' Mutual Inductance
Cryptographic LS| -

LC Oscillation Frequency f; -

Micro EM Probe

Spectrum

Detection Detect the presence of a probe by
range 0.1mm LC oscillation frequency shift

[HHM+14]
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Experimental Setup: Proof of Concept
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PoC Demonstration using COTS components

* Measure the change in

Cr 7 ADC Codes to detect an
S;; ADC PC approaching probe.
Cref :__
1pF T Buffer TivaC |
Board l;
| enp ADC

* Change in ADC codes for
an approaching probe can
be detected using off-the-
shelf components.

Large Metal Plate
(~em?)

204 -

196

ADC Codes

Probe Distance (mm)
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Outline

« Background

e Side-Channel Attacks

e COountermeasures

e Remarks and Discussions
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Background Side-Channel Attacks Countermeasures Remarks

Remarks

* With the availability of low-cost EM probes, non-
Invasive EM side-channel attack can be used to
attack commonplace loT devices.

* The advancement in ML-based attacks can put a
nuge dent to the security of embedded devices.

* Low-Overhead Countermeasures against both
power/EM SCA attacks are very critical.

*|n order for industry to adopt the countermeasures,
It needs to be low-overhead and generic to any
algorithm.

SPARC Lab, ECE, Purdue ICSRL, ECE, Georgia Tech 119
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