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State-of-the-art in

White-Box Cryptograph

White-Boxing with

Diffused-Input-Blocked-Output

White-Box Cryptography (WBC) Diffused-Input-Blocked-Output (DIBO)

= \WBC:

* A hardened version of m —» c=WBC(m)=AES(k*,
where the secret key k* is concealed within the
function WBC, which acts as a public key

= AES in WBC:

m), = Function to white-box: x +— T'(x + k*).

* 8 bit to 32 bit

* Client, can encrypt using c=AES(k*, m) " T-box
* Server, knows the secret key k*, hence can decrypt 02 02S5(x)
and ciphertext ¢ T(z) 01 S(x) = S(x)
= Use-case: | o1 ol S
03 035(x)

* Host Card Emulation (HCE)
* Digital Rights Management (DRM)

= State-of-the-art:

Attacks on White-Box Cryptography

= Statistical attacks (similar to cryptanalysis
techniques):

* Those which leverage techniques from grey-
box analysis (i.e., side-channel or fault
injection analyses), such as differential fault
analysis, differential computation analysis,
collision or mutual information, or high-order
computational attacks

* Those which rely on Fourier transforms

* Hiding elements = random bijections:
* Linear permutation
* Blocked bijection

r+— Op+(x) =BogpoT(x+k"). (2)
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Figure 1: White-box protection Oy« (equation (2)) of v € F5 — T'(x +k*) € F3? (where T
is known but k£* is one byte of the secret key), with DIBO function B o ¢ (i.e., the internal
encoding). Notice that “NL” stands for the non-linear B;, for 1 <i <4

See also:

ISO/IEC DTR 24485.3

Information technology — Security
techniques — Security properties, test
and evaluation guidance for white box

cryptography

Distinguisher: peeling the functional part

» Under key hypothesis
* yis a 32-bit word:

Ap iy Op» (T_l(y) +k)=Bog DT(T_I(’y) + (k + k%))

* X Is a 8-bit word:

A ¢ — A (02z,x,2,032) =
Ok (S™'(z)+ k) =BogoT (S '(z) + (k+ k")) .

Distinguishers concept
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Figure 2: Two WBC situations to be distinguished, cases Ay~ and Ag, for k # k*.

Two distinguishers

" Definition 4 (Spectral distinguisher of Sasdrich et al. [SM 16, §4.4 at page 200]).

= argmin Z Z ‘WA;: (u, ’U)|.

8
kEF; u€Fs 'L?E]F?E
s.t. wg(v)=1

= Definition 5 (Our spectral distinguisher for WBC based on DIBO).

k= argmax#{WAk (u,v) =0|ueF5,ve E}
kelFs
where:

E = {(F$,0,0,0), (0,F5,0,0), (0,0,F%, 0), (0,0,0,F5)} C F5?,
considering that (Fss,0,0,0) stands for Fas x {0}? where 0 is the zero in Fas.

recall the Walsh transform: Wg(u,v) = Z (_1)U.F(m)+u,m
x€eFy

Comparison between the two distinguishers

= Our new distinguisher is motivated:
Lemma 2. Let 1 <i <4, and let F = B; o L; a function from F§ to FS (corresponding to
the ith output of Ag+). Then the number of zeros in Wr(u,v) is at least 28 — 2rank(Li)

= Our new distinguisher is more tractable: Computational complexity = 229 vs 251

= We provide a proof that our distinguisher always works when at least one L; is
neither bijective nor null
* This hints for the countermeasure
* And at the same time proves its theoretical fundation

* Notice that the fact our distinguisher works implies Sasdrich et al.’s working
principle, by a Cauchy-Schwarz argument

Z Z |W(Ak) < \/32 < (28)2 x N where N equals the number of non-zeros among the values

cF 1 of the Walsh transform of the coordinate functions.
xTr 28 %

Our Attack & our Countermeasure

Intuition (simulations) #{WA;C (u,v) =0 |ueTF5ve E}
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Mathematical proof Let rbe therankof L,,0<r<8=n
-1 -1 —1 —1
" Let g, such that: W, c(u) _ § (_1)tr(um)—|—g(tr(b1(m +c) ), .. tr(bp(x "4c) )
EEFQTL
* When c=k+k*=0:
When ¢ = k + k¥ = 0, we can state a simple lower bound on the number of 0 of Wy,
depending only on r. According to Lemma 2, let g be an r-variable Boolean function. The
size of (W,,) 1(0) is larger than or equal to 2" — 2.
Remark 6. This result actually works for any value 0 < r < 8.
Therefore, we need now to prove that the number of zeros in W, is strictly less than
2" — 2" when ¢ # 0.
H * .

" When c#0, L.e., k7K™ Apply Theorem 1 to the case f=g_, where c#0
Theorem 1 (|B3C99]). Let f be a Boolean function over Fon. The size of the Fourier-Hadamard
support {u € For; f(u) =3 cp . f(2)( —1)tux) £ 0} is larger than or equal to 2daigf

lllustration of our mathematical proof
c# 0 Case r =7 c=0
Soundness of the Theorem 1 Lemma 2 Number
distinguisher: | I —»  of zeros
Wrong keys and 0 on — 9daig9e — gn _ gr — gn-1 2" (n=8—1)
correct key areas do
not overlap.
c#0 Case r =6 c=10
Theorem 1 Lemma 2  Number
Mota bene: | : | —»  of zeros
In our proof, the 0 on _ 9dgi,9c ~ 9n _ 9r AL (’fl =8 — 1)
number of zeros
for c#0 is actually
a probability. c # 0 Case r =5 c=10
Theorem 1 Lemma 2  Number
It is = 277 with proba . | . . £
1_2_n When r<7 I ; | | | > O ZeI'OS
0 on — 9dug9e =128 27 —2r =244 2»  (n=8—=1)

Cf. our Theorem 2
y ... even better distinguishing

conditions when r is smaller

Countermeasure

5.1 Average insecurity of DIBO on AES

From the previous analysis, one can state the following

Countermeasure 1. A DIBO obfuscation scheme is tmmune to our attack provided all four
linear functions L;, 1 < i <4, are invertible.
Indeed, in such conditions, the use of Lemma 2 is no longer relevant.

In general, many linear L; : F§ — 3 are permutations. Namely, the number of permutations is
H.-, (25 — 2"), therefore the proportion of invertible linear mappings in F} is -8 11 _”(28 2V) =~
0.290.

But now, for a DIBO obfuscations scheme to be attackable by our distinguisher, it suffices that
at least one L, is non-invertible. Hence the proportion of vulnerable DIBO is:

- 4
1 — (H (1 _ 2“*)) ~ 0.993. (12)

1=0
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