

Monika Trimoska, Sorina Ionica, Gilles Dequen

UNIVERSITÉ

de Picardie

Given a random map $f : S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R' of elements in Ssuch that f(R) = f(R').

Pollard's Rho method

Expected number of steps until the collision is found: πN

→ Thread-safe

→ Fast look-up and insertion

Commonly used structure: Hash table.

Alternative: Packed Radix-Tree-List (PRTL).

Figure: Example of a radix tree holding the set 12345, 12544, 12567, 65476.

Parallel Collision Search

Packed Radix-Tree-List

- → Construct a radix tree up to certain level.
- → Add the points to linked lists, each list starting from a leaf on the tree.

Time complexity analysis

Theorem. In the parallel collision search algorithm, the expected running time to find m collisions with a memory constraint of w words is:

0011 0121	0212 0301	1001 1121	1201 1300	2012 2	102 2202 2331	3012 3100	3232 3302
↓ ↓		+ +		↓			
0031 0122	0313	1011 1122	1313	2022	2211 2333	3020 3133	3303
					2213	3033	3321

Figure: Example of a PRTL holding the set 0011, 0031, 0121, 0122, 0212, etc.

PRTL implementation

00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
11	21	12	01	01	21	01	00	12	02	02	31	12	00	32	02
	- ↓		*	•	*		*	•		•	•	*	*		•
31	22		13	11	22		13	22]	11	33	20	33]	03
										_		•		-	_
										13		33			21

- → Saving space on common prefixes.
- → The stored data is packed in a single vector.
- \rightarrow We can estimate the optimal branching level.

Collision search applications

One collision application

(Elliptic Curve) Discrete Logarithm Problem.

Multi-collision applications

expected number of iterations needed to find and store W points

L - number of used processors.

N - number of elements in S.

 θ - proportion of distinguished points in S.

number of collisions found after storing w points

expected number of iterations needed to find one collision when W points are stored

- Attack on the 3-DES with three independent keys.
- ► (EC)DLP in the multi-user setting.
- Supersingular Fixed-Degree Isogeny Path Problem.

Artifact

