
1PUBLIC

TO APPEAR AT ACM CCS’22

TL;DR

Contract = fine-grained leakage models for processors; defined by users

Automated verification tool checking completeness of leakage model against synthesized processor netlist

Proven end-to-end security: Security proven in the contract (model) implies probing security on gate-level

leakages

Method supports all gate-level leakage

2PUBLIC

PUT (VERY) S IMPLY

DEPENDABLE PRE -S IL ICON VERIF ICATION

Contract = dependable

leakage model

3PUBLIC

PUT (VERY) S IMPLY

DEPENDABLE PRE -S IL ICON VERIF ICATION

masked_program.s

Contract = dependable

leakage model

Verify side-channel security

4PUBLIC

PUT (VERY) S IMPLY

DEPENDABLE PRE -S IL ICON VERIF ICATION

masked_program.s

Contract = dependable

leakage model

Verify side-channel security

Enjoy side-channel security

on any compliant CPU

gate-level probing

adversary guaranteed to

fail

5PUBLIC

PUT (VERY) S IMPLY

DEPENDABLE PRE -S IL ICON VERIF ICATION

masked_program.s

Contract = dependable

leakage model

Verify side-channel security

Enjoy side-channel security

on any compliant CPU

gate-level probing

adversary guaranteed to

fail

In this talk

- Contracts

More precise modeling of leakage

- HW Compliance

Proving completeness of leakage model

6PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

masked_AES.s

B

7PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

masked_AES.s

B

8PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

INSECURE

masked_AES.s

B

9PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

INSECURE

masked_AES.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

1 0PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

INSECURE

masked_AES.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

1 1PUBLIC

Problem: Same program has different

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

INSECURE

masked_AES.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

1 2PUBLIC

Problem: Same program has different microarchitecture

Cause: Processor’s implementation → microarchitecture

A

DEVICE-SPECIF IC LEAKAGE (1)

RESILIENT

INSECURE

masked_AES.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

1 3PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

…
xor x1, x2, x3
and x4, x5, x6
…

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

1 4PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

1 5PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

1 6PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

1 7PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

; x5

; x6

1 8PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

; x5

; x6

1 9PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

xor rD, rN, rM
leak HD(rN, rM)

and rD, rN, rM
leak HD(rN, rM)

; x5

; x6

2 0PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

xor rD, rN, rM
leak HD(rN, rM)

and rD, rN, rM
leak HD(rN, rM)

xor rD, rN, rM
leak HD(rN, previous(rN))
leak HD(rM, previous(rM))

and rD, rN, rM
leak HD(rN, previous(rN))
leak HD(rM, previous(rM))

; x5

; x6

2 1PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

2 2PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

2 3PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

2 4PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands
leak(X(rd), result); // transition leakage, e.g., HD

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

2 5PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands
leak(X(rd), result); // transition leakage, e.g., HD

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

core of a

contract

2 6PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

2 7PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

2 8PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

2 9PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

3 0PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1
leak(X(rs2), rf_pB);

rf_pA = rs1_val; // leakage state to remember operand 1
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

3 1PUBLIC

MODELING LEAKAGE (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1
leak(X(rs2), rf_pB);

rf_pA = rs1_val; // leakage state to remember operand 1
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), X(rs2));

X(rd) = result;
return RETIRE_SUCCESS

}

AB

3 2PUBLIC

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE (3)

CONTRACT

A

3 3PUBLIC

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE (3)

CONTRACT

A

…
xor x1, x2, x3
and x4, x5, x6
…

3 4PUBLIC

POWER CONTRACT

• Contract enables to execute entire programs

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

function step_ibex (op : bits(32)) -> bool = {
nextPC = PC + 4;

let instruction = encdec(op);
let ret = execute(instruction);

let success : bool =
match ret {

RETIRE_SUCCESS => true,
RETIRE_FAIL => false

};
tick_pc();
return success

}

function common_leakage(rs1_val, rs2_val) = {
leak(rs1_val, rs2_val, rf_pA, rf_pB,
mem_last_addr, mem_last_read);
rf_pA = rs1_val;
rf_pB = rs2_val; /* update read ports */
mem_last_read = 0; /* clear data memory port */

}

4 1PUBLIC

E2E SECURITY

• E2E Security:

masked_AES.s

RESILIENT ?

t-(S)NI

4 2PUBLIC

E2E SECURITY

• E2E Security:

masked_AES.s

RESILIENT ? GUARANTEED

RESILIENCE !
t-(S)NI

4 3PUBLIC

E2E SECURITY

• E2E Security:

masked_AES.s

RESILIENT ? GUARANTEED

RESILIENCE !
t-(S)NI t-(S)NI

4 4PUBLIC

E2E SECURITY

• E2E Security:

• Guarantee of contracts:

− t-(S)NI @ Contract implies t-(S)NI @ any compliant HW for any program

masked_AES.s

RESILIENT ? GUARANTEED

RESILIENCE !
t-(S)NI t-(S)NI

4 5PUBLIC

E2E SECURITY

• E2E Security:

• Guarantee of contracts:

− t-(S)NI @ Contract implies t-(S)NI @ any compliant HW for any program

− Holds also for threshold probing security, PINI, TI, …

masked_AES.s

RESILIENT ? GUARANTEED

RESILIENCE !
t-(S)NI t-(S)NI

4 6PUBLIC

E2E SECURITY

• E2E Security:

• Guarantee of contracts:

− t-(S)NI @ Contract implies t-(S)NI @ any compliant HW for any program

− Holds also for threshold probing security, PINI, TI, …

masked_AES.s

RESILIENT ? GUARANTEED

RESILIENCE !
t-(S)NI t-(S)NI

4 7PUBLIC

BIG P ICTURE

program.s

Contract: Model Leakage +

Instruction Semantic

SW Compliance

HW Compliance

scVerif [1]

coco-genoa

[1]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

gate-level probing

adversary

guaranteed to fail

4 8PUBLIC

BIG P ICTURE

program.s

Contract: Model Leakage +

Instruction Semantic

SW Compliance

HW Compliance

scVerif [1]

coco-genoa

[1]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

gate-level probing

adversary

guaranteed to fail

6 0PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

6 1PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state

6 2PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

6 3PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

6 4PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

6 5PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

Prove that HW leakage can be modeled
from some leak statement in contract

6 6PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

Prove that HW leakage can be modeled
from some leak statement in contract

6 7PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak(e1, e2), …}

:= {…, , …}
𝑗

𝑖

6 8PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak(e1, e2), …}

:= {…, , …}
𝑗

𝑖

∃ f(e1,e2) =𝜆𝑔 ?

7 0PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (3)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• check on two pairs of executions

− starting in 𝜎0
𝑐, 𝜎0

ℎ respectively, 𝜎0
𝑐′, 𝜎0

ℎ′

− Is there an execution leading to e1 = e1’ and e2 = e2’ but 𝜆𝑔 ≠ 𝜆𝑔
′ ?

− Then there is no single f since it would need to output different values for the same inputs

− Encode as SMT for automated check

? ∃ f(e1,e2) = 𝜆𝑔

7 3PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (4)

VERIF ICATION OVERVIEW

• Any single instruction

• Deal with pipelines

• Constraints

− New instruction issued in cycle 𝑗

− Instruction successfully retires in cycle 𝑗 + 𝑘

− Assert no exceptions, reset, debug or interrupt

− Memory access immediately granted, no errors

− …

• Verify for instructions lengths k = 1 to max. length

…
xor rD, rN, rM
…

7 4PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

7 5PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

7 6PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

7 7PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

New instruction

issued in cycle 𝑗

7 8PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

New instruction

issued in cycle 𝑗

Instruction successfully

retires in cycle 𝑗 + 𝑘

7 9PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

New instruction

issued in cycle 𝑗

Instruction successfully

retires in cycle 𝑗 + 𝑘

no exceptions, reset, debug or interrupt

8 0PUBLIC

• Dealing with pipelined execution

…

and

VERIFYING COMPLETENESS IN A NUTSHELL (5)

CONFIGURATION

…

……

xor

EX

ID

Cycle -1 Cycle 0 Cycle 1

and

xor

Cycle 2

New instruction

issued in cycle 𝑗

Instruction successfully

retires in cycle 𝑗 + 𝑘

no exceptions, reset, debug or interrupt

Configuration for any

supported instruction

8 2PUBLIC

SUMMARY OF CONTRIBUTIONS

• Contracts express precise leakage behavior

• Method & tool to

− check functional correctness of contract

− check completeness of leakage specification → provably complete leakage models

• Proven end-to-end resilience

− Proofs of security based on the contract also hold for adversaries attacking compliant hardware

− “the execution of any program on any compliant HW is secure if security against the contract has

been shown”

• Applied to IBEX processor

− Open-source contract

• Contract can be compiled to fast emulator

− E.g., for power trace simulator or statistical security assessment

8 3PUBLIC

LIMITATIONS

• HW leakage model

− Tool does not (yet) support glitches / couplings / tech-mapped netlist

− Methodology extends seamlessly

• Random probing security, Noisy leakage model

− Contract does not (yet) carry information on leakage rates

− Existing approaches to security reductions [1], [2]

− Is it possible to augment contracts with leakage/noise rates and to verify these bounds against

netlists?

[2]: The Mother of All Leakages: How to Simulate Noisy Leakages

via Bounded Leakage (Almost) for Free. Gianluca Brian, Antonio

Faonio, Maciej Obremski, João Ribeiro, Mark Simkin, Maciej Skórski,

and Daniele Venturi. EUROCRYPT 2021.

[1]: Unifying Leakage Models: From Probing Attacks to Noisy

Leakage. Alexandre Duc, Stefan Dziembowski, Sebastian Faust.

J. of Cryptologoy 2019.

8 4PUBLIC

LISTING L

LICENSE OF SHOWN CODE -SNIPPETS

RISCV Sail Model

This Sail RISC-V architecture model, comprising all files and directories except for the snapshots of the Lem and Sail libraries in the prover_snapshots
directory (which include copies of their licences), is subject to the BSD two-clause licence below.

Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S. Nikhil and Bluespec Inc., Jon French, Brian Campbell, Robert Norton-Wright, Alasdair Armstrong, Thomas
Bauereiss, Shaked Flur, Christopher Pulte, Peter Sewell, Alexander Richardson, Hesham Almatary, Jessica Clarke, Microsoft, for contributions by Robert Norton-
Wright and Nathaniel Wesley Filardo, Peter Rugg and Aril Computer Corp., for contributions by Scott Johnson.

Copyright 2020-2022 - TUHH, TU Graz

All rights reserved.

This software was developed by the above within the Rigorous Engineering of Mainstream Systems (REMS) project, partly funded by EPSRC grant EP/K008528/1, at the
Universities of Cambridge and Edinburgh.

This software was developed by SRI International and the University of Cambridge Computer Laboratory (Department of Computer Science and Technology) under
DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA SSITH research programme.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant
agreement 789108, ELVER).

This software has received funding from the Federal Ministry of Education and Research (BMBF) as part of the VE-Jupiter project grant 16ME0231K.

This work was supported by the Austrian Research Promotion Agency (FFG) through the FERMION project (grant number 867542).

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

