ТП

A 22nm ASIC for Flexible Post-Quantum Cryptography

<u>Patrick Karl</u>¹, Jonas Schupp¹, Debapriya Basu-Roy^{1,3}, Maximilian Schöffel⁴, Johannes Feldmann⁴, Norbert Wehn⁴, Georg Sigl^{1,2}

¹Technical University of Munich ²Fraunhofer Institute for Applied and Integrated Security ³Indian Institute of Technology Kanpur ⁴Technical University of Kaiserslautern

September 18, 2022

Table of contents

Introduction

Architecture

Physical Characteristics

Preliminary Results and Estimations

Outlook

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Introduction

• Motivation

- Design PQC HW accelerators and ISEs for efficiency gain on RISC-V platforms
- Smaller technology nodes (65 nm \rightarrow 22 nm)
- Bring design to silicon, gain experience
- Target NIST PQC finalists
 - ► Lattices: Generic RISC-V processor [Fri+21]
 - Codes: HQC co-processor
 - Isogenies: SIKE co-processor
- \rightarrow Main objective: High performance with flexible PQC support

Architecture

Introduction

Architecture

Physical Characteristics

Preliminary Results and Estimations

Outlook

System Overview

Central MCU

- Basic computing
- Data transfer and communication
- Lattice-based cryptography

• Co-processors

- Standalone processors
- Directly accessible from peripherals
- Code- and isogeny-based

System Overview

Central MCU

- Basic computing
- Data transfer and communication
- Lattice-based cryptography

• Co-processors

- Standalone processors
- Directly accessible from peripherals
- Code- and isogeny-based

- Base design based on [Fri+21] to be presented at CHES2022!
- Provides acceleration for
 - Generic accelerator for Number Theoretic Transform (NTT)
 - Hashing, binomial sampling, A2B/B2A conversions, compression (masking support)
- Targeting Kyber/Saber
 - Strong competitors in NIST competition
 - Comparison of overhead for SCA resilience

- PULPino [Gau+17]
 - cv32e40p: 4-stage pipeline

► RV32IMFC

• Keccak

- Full round unmasked
- Masked non-linear layer χ

Func7	Func3	Name	
0x08	0	keccak-f1600	
	0	pq.mchiw	
0x16	1	pq.mchic	
	2	pq.mchir	

Bitsliced Sampler

 Adder tree for binomial sampling

Func7	Func3	Name	
0x15	0	pq.slicew	
	1	pq.slicer	
0x14	0	pq.mbinw	
	1	pq.mbinc	
	2	pq.mbincinv	
	3	pq.mbinr	
	4	pq.mbincpy	
	5	pq.mbinrst	

SecAdder

- Securely adding shares
- Used for A2B/B2A conversions

Func7	Func3	Name	
0x17	0	pq.maddw	
	1	pq.maddc	
	2	pq.maddcc	
	3	pq.maddr	

- Generic NTT [Fri+21]
 - NTT-based polynomial arithmetic
 - Wide range of parameters supported
 - Transforms, multiplication, addition etc.

Co-processor: Hamming-Quasi Cyclic (HQC) Key Exchange

- Contributed by Technical University of Kaiserslautern
- Based on syndrome-decoding problem
 - Cyclic codes for smaller keys
 - Concatenation of Reed-Muller Reed-Solomon codes
 - Support for security level 1
- Fully functional crypto peripheral
 - Custom RV32I core
 - ISA Extensions for decoding

Figure: Co-processor architecture

Co-processor: Hamming-Quasi Cyclic (HQC) Key Exchange

Control Unit

- Access to memories
- Manages operation mode, starts submodules
- Independent from RISC-V (parallel execution)

• R-Unit

• Arithmetic in $F_2[X]/(X^n-1)$

• Sampling Unit, RM-Decoder

- Keccak-based PRNG unit
- Decoding of Reed-Muller codeword

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Figure: Accelerator architecture

Co-processor: Supersingular Isogeny Key Exchange (SIKE)

- Based on the computation of isogenies
 - Supports SIKEp434 and SIKEp751
 - Security level 1 and 5
- Main bottlenecks
 - Point trippling
 - Evaluation of degree 3 isogenous curve
- Basic idea similar to [RM19]
 - ► 2 radix-15 multipliers
 - Each doing 3 multiplications in parallel

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Figure: Co-processor architecture

Co-processor: Supersingular Isogeny Key Exchange (SIKE)

- Countermeasures for scalar multiplication
 - Scalar splitting
 - Point randomization
- Can be used for acceleration of ECC
 - ► Brainpool, Curve25519, NISTp256 etc.
- Technically isogeny computation also secured

Physical Characteristics

Introduction

Architecture

Physical Characteristics

Preliminary Results and Estimations

Outlook

Some Physical Characteristics

- 22 nm FDSOI Globalfoundries via Europractice
 - SLVT cells for high performance
 - LVT for buffers (slower, less leakage)
 - ► Total of 10 layers
- Chip size $2.5 \text{ mm} \times 1.25 \text{ mm} = 3.125 \text{ mm}^2$
- Realized with Cadence toolchain, i.e. Genus, Innovus, Tempus etc.
 - DRC checks with Siemens Calibre

Area Consumption obtained after Synthesis

Module	Combinational [mm ²]	Sequential [mm ²]	Memory [mm ²]	Total [mm²]
SIKE	0.102	0.105	0.463	0.670
HQC	0.137	0.015	0.150	0.302
NTT	0.006	0.007	0.101	0.114
RISC-V	0.025	0.019	0.151	0.195
Total	0.152	0.157	0.865	1.174

Table: Area consumption in mm²

Main Difficulties

- Number and form factor of memories
 - ► Difficult place & route
 - Long paths from address decoders
- E.g.: SIKE memories
 - ▶ Instruction: 1024 × 192 bit
 - ▶ Data: $1024 \times 80 \text{ bit} \rightarrow 10 \text{ parallel instances for width of } 800 \text{ bit}$
- ightarrow 500 MHz clock generated by Frequency-Locked Loop (FLL) provided by ETH Zürich
 - Critical path from RISC-V to peripherals via system bus
 - Multipliers inside SIKE

Floorplan – Density before buffer insertion

Floorplan – Density after buffer insertion

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Bonding Diagram

- Quad Flat No-lead (QFN) package
 - ► 80 pins
 - ▶ 1.2 cm × 1.2 cm
- Core-Voltage 0.8 V
- IO-Voltage 3.3 V

Preliminary Results and Estimations

Introduction

Architecture

Physical Characteristics

Preliminary Results and Estimations

Outlook

ТШТ

Total Power Consumption Estimation

- kyber512ref: PULPino, no accelerators
- kyber512: PULPino, unused accelerators
- kyber512hw: PULPino, used accelerators
- $\approx 2 \times$ power consumption with our accelerators ($\approx 6 \times$ area)

Cycle Count

• Improvements up to a factor of ≈ 12

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Cycle Count

- Kyber512
 - Keygen: 1, 140 $k \rightarrow 117k$
 - Encaps: $1,549k \rightarrow 178k$
 - Decaps: $1.528k \rightarrow 189k$
- Lightsaber
 - Keygen: $1.081k \rightarrow 149k$
 - Encaps: 1,517 $k \rightarrow 205k$
 - Decaps: $1,555k \rightarrow 231k$

- HQC128
 - ► Keygen: 71k
 - Encaps: 152k
 - ► Decaps: 616k
- SIKEp434
 - ► Kevgen: 1,215k
 - ► Encaps: 1,538k
 - ► Decaps: 1,502k

- Kyber1024
 - Keygen: 3, $364k \rightarrow 270k$
 - Encaps: 4, 010 $k \rightarrow 373k$
 - Decaps: $3.933k \rightarrow 398k$
- Firesaber
 - Kevaen: 3, 448 $k \rightarrow 352k$
 - Encaps: 4, $241k \rightarrow 455k$
 - Decaps: 4, $357k \rightarrow 513k$

Latency in [ms] according to 500 MHz

Computed Energy Consumption

• Factor 7 – 13 of savings depending on algorithm, security level and function

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

Computed Energy Consumption

- Kyber512
 - Keygen: $1152 \,\mu J \rightarrow 115 \,\mu J$
 - Encaps: $1584 \,\mu J \rightarrow 175 \,\mu J$
 - $\blacktriangleright \ Decaps: 1562\,\mu J \rightarrow 186\,\mu J$
- Lightsaber
 - $\blacktriangleright \ \ \text{Keygen: 1088} \, \mu\text{J} \rightarrow 147 \, \mu\text{J}$
 - Encaps: $1545 \,\mu J \rightarrow 202 \,\mu J$
 - Decaps: $1587 \,\mu J \rightarrow 229 \,\mu J$

- HQC128
 - ► Keygen: 70 µJ
 - ► Encaps: 150 µJ
 - Decaps: 623 µJ
- SIKEp434
 - ► Keygen: 1210 µJ
 - ► Encaps: 1540 µJ
 - ► Decaps: 1504 µJ

- Kyber1024
 - $\blacktriangleright \ \ \text{Keygen: 3496} \, \mu\text{J} \rightarrow 267 \, \mu\text{J}$
 - ► Encaps: $4220 \, \mu J \rightarrow 370 \, \mu J$
 - $\blacktriangleright \ \text{Decaps: 4136}\,\mu\text{J} \rightarrow 396\,\mu\text{J}$
- Firesaber
 - $\blacktriangleright \ \ \text{Keygen: 3580} \ \mu\text{J} \rightarrow 350 \ \mu\text{J}$
 - $\blacktriangleright \ Encaps: 4468\,\mu J \rightarrow 455\,\mu J$
 - ► Decaps: $4603 \, \mu J \rightarrow 515 \, \mu J$

Power Analysis Kyber-512 Encapsulation

Power Analysis Kyber-512 Encapsulation

- Internal: Small shorts when switching
- Switching: (De-) charging capacitive load
- \rightarrow Static leakage neglectable

Outlook

- Check functionality
 - ► Try to verify our estimations (power, energy) with measurements
- Investigate side-channel secured implementations
 - Adjust code of masked implementations to our platform
 - Perform measurements

Thank you for your attention!

Contact: patrick.karl@tum.de

Patrick Karl | A 22nm ASIC for Flexible Post-Quantum Cryptography

ТШТ

References

- [Fri+21] T. Fritzmann et al. "Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography". In: *IACR* Transactions on Cryptographic Hardware and Embedded Systems (Nov. 2021), pp. 414–460.
- [Gau+17] M. Gautschi et al. "Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices". In: *IEEE Transactions on Very Large Scale Integration (VLSI) Systems* 25.10 (Oct. 2017), pp. 2700–2713.
- [RM19] D. B. Roy and D. Mukhopadhyay. "High-Speed Implementation of ECC Scalar Multiplication in GF(p) for Generic Montgomery Curves". In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.7 (July 2019), pp. 1587–1600.