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Abstract. Security verification of masked software implementations of cryptographic
algorithms must account for microarchitectural side-effects of CPUs. Leakage con-
tracts were proposed to provide a formal separation between hardware and software
verification, ensuring interoperability and end-to-end security for independently veri-
fied components. However, previously proposed leakage contracts did not consider a
class of ephemeral hardware effects called glitches, which leaves a considerable gap
between security models and the capabilities of real-world attackers. We address
this issue by extending the model for leakage contracts to account for glitches and
transitions. We further present the first end-to-end verification tool for transient
leakage contracts. Our hardware and software verification rely on the same contract
as a single source of truth, facilitating fully machine-checked verification from the
hardware gate level to the software. By allowing contracts to be written in the C
programming language we make power contracts more accessible and intuitive for
system-level engineers. To showcase the efficacy of our approach, we apply it to the
RISC-V Ibex core. We show that it is possible to write a power contract for Ibex
without any modifications to the hardware design. Using this contract, we prove
end-to-end security between masked software and gate-level hardware.
Keywords: Hardware-Software Contracts · Power Analysis · Co-Verification

1 Introduction
Physical side-channel attacks such as power [KJJ99] or electromagnetic emanation [QS01]
analysis violate the security assumptions of cryptographic algorithms, allowing attackers
to extract sensitive information from devices they have physical access to. A widely
used countermeasure against such attacks on physical implementations of cryptographic
algorithms is masking [CRB+16, GMK16, ISW03]. Like any secret-sharing technique,
masking splits an algorithm’s inputs and outputs into multiple intermediate values called
shares. When splitting a secret into d ≥ t + 1 random shares, any set of at most t
intermediate values of the computation must be statistically independent of any secret
value, implying that an attacker with access to at most t intermediate values cannot learn
any information about the secret.

In their seminal paper, Ishai et al. [ISW03] introduce a method to transform arbitrary
algorithms into functionally equivalent masked algorithms. Their method requires that
each successive computation emit leakage independent of previous computations. However,
this is not the case in typical hardware implementations. Due to various physical effects
occurring in integrated circuits, the power consumption of a design correlates with computa-
tions from consecutive clock cycles, potentially breaking the security guarantees of concrete
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implementations. To address this issue, extended leakage models were proposed that incor-
porate physical effects to prevent the reduction of security order [FGP+18]. Software-based
masking implementations additionally suffer from leakages caused by microarchitectural
components, such as register files, load store units, and arithmetic logic units. While
results of ephemeral computations in those components are immediately discarded, they
can cause unexpected leakage behavior, further reducing security guarantees.

The underlying physical phenomena causing leakage in integrated circuits, known
as physical defaults [dGPdlP+16, MMT20, GHP+21], are well known and extensively
discussed in circuit design literature. The most straightforward effect is the correlation
between static power consumption and the values present in the gates of a circuit design.
Early publications [ISW03] formalize this effect as value leakage, which allows an attacker
to observe the values of computations at the end of a clock cycle.

Besides value leakage, other physical defaults stem from the dynamic power consumption
of circuit designs. A CMOS gate predominantly draws power when its output state switches.
An attacker may also be able to discern whether the state switches from high to low or the
opposite. Transition leakage formally describes this behavior as leaking the value of the
gate’s output both at the start and end of a clock cycle, allowing an attacker to observe
both values [CGP+12, BGG+14].

This model assumes that transitions only happen once per clock cycle. More precise
models account for state transitions caused by inconsistent signal propagation timing.
Such ephemeral state transitions that happen before a gate switches to the correct output
are called glitches [MPG05, BGG+14]. They can happen multiple times per clock cycle,
significantly impacting the design’s power consumption. There exist digital circuit designs
that prevent glitches, however, they often have significant downsides, such as increased
area requirements. As glitches are ubiquitous in hardware designs, it is vital to consider
them in power-side-channel analysis.

To verify the absence of order-reducing leakage effects, some works propose to use
the ISA description to estimate the leakage effects inside of CPUs. Unfortunately, the
microarchitectural details of a CPU design significantly impact the actual leakage behavior,
which renders models purely based on the ISA incomplete, reducing the actual security order
by up to a factor of 2 [BGG+14] and for pipelined processor designs, the security order scales
with the number of pipeline stages [GPM21]. Recently, leakage contracts were proposed as
a way of accurately formalizing the leakage behavior of CPUs by combining the functional
ISA specification with the specification of gate-level leakage characteristics. Software
and hardware compliance with a contract can be verified independently, guaranteeing
that any compliant program can be securely executed on any compliant CPU. While this
allows for very efficient and flexible verification, previously proposed leakage contract
formalisms [BGG+22] lack support for glitches and are, therefore, inherently incomplete.

Our Contribution. We address the issue of previously unconsidered physical defaults
by introducing an extended contract language that accounts for transitions and glitches,
thereby closing the gap between formal verification and physical hardware effects. We
also introduce an end-to-end power-contract-verification tool that harnesses user-supplied
contracts as a single source of truth for hardware and software verification. Our tool
enables automated end-to-end verification from gate-level leakage to software.

1. Extended Gate-level Leakage Model. We extend the leakage model of
Bloem et al. [BGG+22] to account for glitches. Previously proposed glitch models [FGP+18]
define glitches in a fashion that allows glitch propagation through the entire cone of a gate.
We propose a tighter model that accounts for scenarios in which glitch propagation is
terminated, considerably reducing the leakage that can be caused by glitches. We identify
such scenarios by utilizing knowledge about the concrete values of a gate’s inputs.

We obtain our model by formalizing the conditions for glitch propagation. We first
formally describe the leakage of common CMOS gates. Deriving from our leakage model,
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we obtain a notion of signal stability for each type of gate. We then define a notion of
detectable difference for each type of gate with respect to the values and stability of its
inputs. Applying this notion recursively to the netlist of a hardware design allows our model
to capture any potentially occurring glitches. The resulting security notion can be checked
using the same 2-safety hyperproperty verification introduced by Bloem et al. [BGG+22].

2. End-to-End Verification. To showcase the feasibility of our method, we introduce
a tool1 to verify compliance of hardware and software with glitch-aware leakage contracts.

During hardware verification, we show that for every observable leak in hardware, there
is a corresponding leak emitted by the contract. This property can be easily expressed as an
SMT problem with bitvector theories [BGG+22]. We utilize the CBMC frontend [CKL04]
to obtain an SMT encoding of the contract, which is then verified against an SMT encoding
of the CPU circuit via the Boolector SMT solver [NPWB18].

To verify software compliance with a contract, the user needs to provide the assembly
code of the program and information about the location of secret values in the memory
and registers. Verification then happens in two steps. First, all leakages emitted by the
contract are recorded by executing the program according to the semantics of the contract.
Second, to show order t probing security, all combinations of at most t observations are
proven to be independent from any of the secrets. For this, a verification approach based
on the approximation of Fourier coefficients [BGI+18] is used. The resulting problem can
then be efficiently solved with modern SAT solvers.

We chose the C programming language for our contracts because it is widely used
in low-level engineering. As contracts are intended to aid the development of secure
masked software implementations, choosing a language most system engineers are already
familiar with is beneficial. Due to the prevalence of C/C++, implementations for many
instruction-set architectures already exist, reducing the effort of contract creation.

3. Case Study. To illustrate the effectiveness of our approach, we apply it to the
RISC-V Ibex core [low], which is widely used in embedded systems research. In our
experiments, we apply our approach to multiple masked implementations of gadgets and
ciphers for several masking orders. Our results demonstrate that our method can be
significantly faster than state-of-the-art methods that directly verify software against
hardware netlists, considering that hardware verification has to be performed only once.

Related Work. Previous papers addressing power-side-channel leakage typically
approach the issue either empirically, by performing power analysis on physical devices, or
by means of formal verification.

Empirical analysis is conducted by measuring power consumption and analyzing the
resulting power traces with statistical methods. This approach enables the study of
observable leakage effects, which can guide the development of more resilient masked
implementations [MOW17, PV17, GO22, SCS+21, BDM+20]. Methods based on empirical
or generalized leakage models rely on a high practical effort to obtain confidence in the
security assurances they provide.

Formal verification approaches prove security with respect to specific masking security
notions, which provide an abstraction of the leakage effects observable in the real world.

MaskVerif [BBC+19] is a software and hardware masking verification tool that can
verify probing security and the security notions t–NI and t–SNI. scVerif [BGG+21]
extends the verification approach, allowing the verification of user-provided leakage models.
Both tools require the leakage model to cover all physical defaults comprehensively.

Coco [GHP+21] is a masking verification tool that directly models the leakage of
every gate in the hardware circuit netlist, avoiding the reliance on generalized leakage
models. Their extended hardware leakage model covers glitches and transitions, giving
strong guarantees about the completeness of the verification. Due to the direct verification
of software against hardware, the approach is more time consuming and must be performed

1https://github.com/IAIK/glitch-contracts
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separately for every program on every version of every compatible CPU design. In contrast,
the modular verification approach of leakage contracts allows to test each program and
CPU design individually, reducing the overall verification effort while maintaining security.

Bloem et al. [BGG+22] propose leakage contracts to specify the leakage behavior of
CPUs formally. They allow the verification to be split into two parts. Hardware and
software are independently checked against the contract, ensuring that any compliant
software can be executed securely on any compliant processor. They introduce Genoa, a
DSL for the specification of leakage contracts. To verify software against a contract, they
rely on scVerif. In their evaluation, they manually extract the leakage model from their
Genoa contract and translate it into the DSL of scVerif. While the overall verification
process is sound, this manual translation makes the process vulnerable to user errors.
Moreover, they only consider transition leakage, leaving out leakage caused by glitches.

Wang et al. [WMvG+23] propose a system with a similar notion of leakage contracts.
Their contract notion is aimed at verifying classic non-interference properties to prove
resistance against software-visible microarchitectural leaks. This leads to a different notion
of contract satisfaction than ours, as we use contracts to verify power-side-channel security
with a focus on glitches and transitions.

2 Preliminaries
In this section, we present the foundational concepts pertaining to side-channel security.
Section 2.1 provides a comprehensive overview of the masking countermeasure and outlines
the formal definitions of provable side-channel resilience. Section 2.2 formally defines
contracts and the abstract semantics of their execution. Section 2.3 establishes a model for
hardware circuits and their associated power side-channel leakage. Section 2.4 introduces
the formalisms of physical defaults into gate-level leakage models. Section 2.5 formally
defines compliance of a hardware circuit with a contract. Section 2.6 gives an overview
of the steps involved to verify hardware compliance. Finally, Section 2.7 formally defines
compliance of software implementations with a contract.

2.1 Masked Computation and Security
In the following, we formally define masked computations. Masking is a countermeasure
against power-analysis attacks, where all secret values are encoded as a linear combination
of a set of d shares, where d is higher than the expected attack order t. The rationale,
which we formalize later, is that an attacker with access to at most t intermediate values
in a computation cannot learn any secrets no matter how many times they observe the
masked computation.

In the following, we use lowercase letters (e.g., x) for variables, and subscripts for secret-
and share indices (e.g., xi,j is the j-th share of the i-th secret variable xi). We denote a
tuple of unshared variables with x := ⟨x0, . . . , xn−1⟩. A secret variable xi can be encoded
(masked) as a tuple of shares xi := ⟨xi,0, . . . , xi,d−1⟩, with xi = xi,0 ⊕ . . . ⊕ xi,d−1, where
⊕ is addition in the respective field. Finally, we use the shorthand x := x0 ∥ . . . ∥ xn−1 for
the concatenation of share tuples xi corresponding to unshared variables xi in x.

Formally, a masked computation is a function f : ⟨x, p, r⟩ 7→ ⟨y, q, λ⟩ mapping an
input tuple of shared secrets x, public values p, and masks r to an output tuple of shared
secrets y, public values q, and leaks λ. Each output yi,j , qi, and λi is computed by a
corresponding coordinate function of f given the inputs, e.g., yi,j := yf

i,j(x, p, r). The
leaks λi are of particular interest for the security of the masked computation, because
they represent the values an adversary is able to observe, e.g., through power side-channel
measurements. Note that the individual leaks λi are not necessarily in the same field as
each other or the secrets, e.g., they can represent concatenations of a varying number of
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field elements. The goal of the adversary is to recover information about the input secrets
xi from at most t observed leaks λi.

In order to properly specify what it means for a masked computation to be secure,
we first have to interpret its inputs and outputs as random variables. Each random
variable x, respectively tuple of random variables like xi and x, is then associated with a
distribution. Moreover, mutual information I (x; y) between variables x and y measures
their dependence, with I (x; y) = 0 if and only if they are statistically independent. Using
this notation, Definition 1 formalizes t-probing security for masked computations.

Definition 1 (t-probing security ([ISW03, RP10, KSM20, BGG+22])). A masked compu-
tation f(x, p, r) = ⟨y, q, λ⟩ is t-probing secure if and only if for every set of observations
e ⊆ λ, with |e| ≤ t, the joint distribution of observations e, p, and q is statistically
independent from the distribution of unshared input secrets x, i.e.,

I (x; p, q, e) = 0.

2.2 Contracts as Programs in a Formal Language
A leakage contract, as introduced by Bloem et al. [BGG+22], is a formal specification of
a processor’s functionality (ISA), as well as its side-channel leakage behavior. Just like
conventional ISA descriptions, a leakage contract precisely defines instruction semantics
and their effects on the processors state. It furthermore describes some micro-architectural
elements of the processor as well as an over-approximation of the leakage an adversary may
observe during the execution of an instruction. For processor hardware to be compliant
with a leakage contract, it must be functionally equivalent to the ISA of the leakage
contract, and it must not exhibit any side-channel leakage not covered in the contract.

At its core, a leakage contract is just a program, implemented in a some programming
language, that specifies the execution of an instruction and the leakage it emits. As a
matter of fact, a leakage contract can be expressed in any commonplace turing-complete
programming language. From a practical point of view, one should aim for a programming
language easily understood by both software and hardware developers, with an efficient
translation into symbolic formulas for the purposes of compliance verification. In the rest
of this section, we discuss the formalisms of a contract written in a C-like language.

Programming languages can be formally specified through so-called small-step opera-
tional semantics, describing how the language would execute a program on an abstract
machine by continuously reducing an expression until the program “terminates”, yielding
a return value [Plo81, NN07]. The small-steps semantics “−→” of a language describe how
to transform the current configuration ω into the next configuration ω′ by interpreting a
single statement, written as ω −→ ω′. Usually, the configuration of an abstract machine
for a given language consists of its value storage µ and a sequence of statements to be
evaluated ρ, i.e., ω = ⟨µ, ρ⟩. As an example, the following is a valid sequence of reductions
in a C-like language:

. . . −→ ⟨{a 7→ 5}, “int b = a + 7; a = 8;”⟩ −→ ⟨{a 7→ 5}, “int b = 12; a = 8;”⟩ −→
−→ ⟨{a 7→ 5, b 7→ 12}, “a = 8;”⟩ −→ ⟨{a 7→ 8, b 7→ 12}, “”⟩.

Therefore, writing a leakage contract for a processor boils down to writing a program A

that specifies the execution of one instruction on the processor, starting with configuration
⟨µA

j ,A⟩ and finishing with configuration ⟨µA

j+1, “”⟩ after a sequence of −→ reductions. Since
the contract needs to specify both the functional behavior of the processor and its leakage
behavior, the value storage is split into two distinct parts µA = ⟨σA, λA⟩, where σA contains
a specification of the “ISA state” of the processor, and λA represents the set of leaks
observable by an adversary.

The σA part of the value storage can be thought of as containing the state of all global
variable symbols v ∈ V A in the contract A that describe the state of the processor. For
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example, each machine register defined in the ISA would correspond to some global variable
v in the contract, also called locations. We write v(σA) to denote the value of v in state σA.

As for the leaks λA, they can be thought of as a special global variable in the leakage
contract, only accessible through a special variadic function void leak(...). Since
leakage cannot disappear, and only accumulates, the leak function only appends the
concatenation of its arguments to λA. Its abstract small-step semantics are

⟨σA, λA, “leak(v1, . . . , vn);”ρ⟩ −→ ⟨σA, λA ∪ ⟨v1(σA) ∥ . . . ∥ vn(σA)⟩, ρ⟩. (1)

Furthermore, unlike calls to the leak function shown in (1), the interpretation of any other
statements is leakage free and only impacts σA.

In the rest of this work, we use the notation ⟨σA

j , λA

j ⟩ A−→ ⟨σA

j+1, λA

j+1⟩ to mean the
execution of a single instruction in the contract A through a sequence of small-step
reductions ⟨σA

j , λA

j ,A⟩ −→ . . . −→ ⟨σA

j+1, λA

j+1, “”⟩. Moreover, we write nA−→ to mean n ∈ N
consecutive executions of n instructions in the contract A. Therefore, ⟨σA

0 , ⟨⟩⟩ nA−→ ⟨σA
n, λA

n⟩
represents the execution of a machine program starting in state σA

0 for n instruction in the
contract A, finishing in state σA

n and having emmitted leakage λA

n visible to an adversary.
The machine program is located in memory and therefore contained in the initial state σA

0 .

2.3 Gate-level Hardware as Graphs

Every synchronous hardware circuit (e.g., a processor) can be thought of as a labeled
directed graph = ⟨G, W, T, P, θ⟩, where the nodes G are the gates in the design, labeled
directed edges W ⊆ G × P × G are the wires connecting the output of a gate g′ to an
input port p of gate g. Furthermore, θ : G → T is a function that labels each gate g ∈ G
with its type/functionality t ∈ T . Additionally, no two gates can be connected to the same
port of the same destination gate.

The gate types T depend on the netlist technology used to realize the circuit. Irrespective
of the technology, T contains the special gate types treg and tin, which represent simple
registers and circuit inputs respectively. For all simple logic gates within the technology,
i.e., gates with only one output, T contains a corresponding label, e.g., tand for And
(∧) gates, whereas P contains the appropriate port labels, e.g., pin0 and pin1 . Moreover,
without loss of generality, complex logic gates with mutliple outputs are decomposed into
multiple simple gates with a single output, and complex register types are decomposed into
a gate computing the next state and a simple register labeled treg. Since we are interested
in synchronous hardware designs, we require each register to be driven with the same
phase of the same clock gclk ∈ G. Moreover, this work only considers hardware circuits
where all cyclic paths contain at least one register.

At any point during the execution of the hardware, its stable state is uniquely determined
by the value of its inputs and registers. We term these gates locations, defined as
V = {g | g ∈ G, θ(g) ∈ {treg, tin}}. We use σ ∈ {⊥, ⊤}|V | to represent the state of the
hardware circuit, and it can be thought of as a concatenation of location values according
to some total order <G. In this interpretation, all locations v ∈ V are just functions
returning the appropriate bit of the state σ . Similarly, every other gate g ∈ G\V is then
just a function of the state, i.e., g : {⊥, ⊤}|V | → {⊥, ⊤}, that is recursively defined through
its type θ(g) and the values arriving at its ports. With slight abuse of notation, we also
define the value for any subset of gates G′ ⊆ G as a function G′ : {⊥, ⊤}|V | → {⊥, ⊤}|G′|

returning a concatenation of gate function values g ∈ G′ according to the total order <G.
This notation is especially useful in the context of computation bases, where a computation
base Cg of a gate g is the set of all locations v ∈ V necessary to compute the value of g
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in the current circuit state σ . More formally, we can define Cg recursively as

Cg =
{

{g} if g ∈ V
∥g′∈G,∃p:⟨g′,p,g⟩∈W Cg′ otherwise .

Synchronous hardware circuits are executed in clock cycles. Therefore, we write σi for
the state of the circuit in the i-th clock cycle. At the start of a clock cycle, the values
of each location is updated in accordance with its type. While the value of every circuit
input is determined by the circuits environment (e.g., a testbench or driver), every register
g is updated in accordance to its next-state input g′ ∈ G, with ⟨g′, pns, g⟩ ∈ W , as
g(σi ) = g′(σi−1). We write σi−1 −→ σi to denote that the states σi−1 and σi are related
through such a state update of the circuit .

2.4 Gate-level Leakage Models
Power side channels in integrated circuits primarily originate from CMOS gates altering
their state, which impacts their power consumption and electromagnetic radiation emission.
Consequently, the power consumption of CMOS gates on the data they process, which leads
to side-channel leakage. The leakage behavior of CMOS gates has been studied in depth and
can be modeled in terms of simple physical leakage effects [dGPdlP+16, MMT20, GHP+21].

In the following, we denote the leakage of a gate g with a function λg , where the
domain and co-domain of the function depend on the considered physical leakage effect.
For simpler notation, we say that λg gets both the previous state σi−1 and the current
state σi as arguments, even if it ignores σi−1 in the given leakage model.

Value leakage was the first physical leakage effect that was considered in the side-
channel literature [ISW03]. An idealized adversary with access to value leakage can observe
the value of any wire connected to a gate at the end of a clock cycle. Therefore, the value
leakage λg of a gate g is its value λg (σi−1, σi ) := g(σi ) in the state σi .

Transition leakage is another physical leakage effect that describes the phenomenon
where the dynamic power consumption of CMOS gates depends on their previous and
current value [BGG+14]. An observer would not only be able to tell what the value of the
gate is in the current clock cycle, but also whether it changed from zero to one or vice
versa. Formally, an idealized adversary can observe the initial value and the resulting value
of each gate, with observable gate leakage λg (σi−1, σi ) := g(σi−1) ∥ g(σi ) representing the
concatenation of old and new gate values, thereby capturing all possible transitions.

Glitch leakage is a physical leakage effect that arises due to the change in value a
gate experiences within a clock cycle [FGP+18]. The evaluation of a gate does not happen
instantaneously, and neither is its output value propagated instantaneously through the
outgoing wires. Instead, whenever a change occurs in a gate’s input, it must potentially
update the output accordingly, leading to a cascade of adjustments in other gates connected
to its output. For convenience, a common approximation of glitch leakage effects is to
assume an adversary observing a logic gate g can gain information about all registers and
circuit inputs in the gate’s computational base Cg. The glitch-extended leakage λg of gate
g in state σi is then defined as λg (σi−1, σi ) := Cg(σi ).

The overall leakage emitted by circuit during the execution of a single clock cy-
cle i corresponds to the concatenation of all the individual leakages of every single
gate g ∈ G, written as ⟨λg (σi−1, σi ) | g ∈ G⟩. We extend the meaning of the state
update relation −→ to also capture the leakage emitted during clock cycle i, with
⟨σi−1, σi , λi ⟩ −→ ⟨σi , σi+1, λi+1⟩ meaning the relation where σi−1 −→ σi −→ σi+1

and λi+1 = λi ∪ ⟨λg (σi−1, σi ) | g ∈ G⟩. Furthermore, we write m−→, with m ∈ N
for the m consecutive applications of the −→ relation. With this shorthand notation,
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⟨σ−1, σ0 , ⟨⟩⟩ m−→ ⟨σm−1, σm, λm⟩ represents an m cycle execution of circuit , starting
in state σ0 , terminating in state σm, and producing leakage λm throughout the whole
execution.

2.5 Hardware Compliance with a Contract
A contract A specifies the functional and leakage behavior of a processor hardware circuit

. We say that processor is compliant with contract A if and only if (a) they perform
the same functional computation and (b) any leakage detectable in the hardware is also
leaked in the contract when computing with the same data [BGG+22]. This notion is
formalized through the use of a relation ≃M defined by a mapping M between hardware
locations V in and contract locations V A in A.

Definition 2 (⟨σi−1, σi ⟩ ≃M σA). Let be a circuit with locations V , and A be a
contract with locations V A, and let M ⊆ {−1, 0} × V × V A be a timed mapping between
their locations. States ⟨σi−1, σi ⟩ and σA are related, written as ⟨σi−1, σi ⟩ ≃M σA, if and
only if (σi−1 −→ σi ) ∧

∧
⟨l,v ,vA⟩∈M v (σi+l) = vA(σA).

The relation ≃M, as given in Definition 2, is slightly different from the definition given by
Bloem et al. [BGG+22] and includes timing information. Their work only maps values from
the contract to the hardware state at the beginning of the first cycle of instruction execution
(i.e., l = 0), while our glitch-aware leakage model necessitates additional mappings to the
clock cycle before an instruction started executing (i.e., l = −1).

Definition 3 (Compliance). A hardware implementation is compliant with contract A

under relation ≃M if for every sequence of n instructions, executing for m clock cycles,
and starting hardware and contract states σ0 and σA

0 , the executions ⟨σA
0 , ⟨⟩⟩ nA−→ ⟨σA

n, λA

n⟩
and ⟨σ−1, σ0 , ⟨⟩⟩ m−→ ⟨σm−1, σm, λm⟩ fulfill:

(a) Related states remain related: Whenever ⟨σ−1, σ0 ⟩ and σA
0 are related under

≃M, so are the resulting states ⟨σm−1, σm⟩ and σA
n:

∀σ−1, σ0 , σA
0 :

(
⟨σ−1, σ0 ⟩ ≃M σA

0
)

⇒
(
⟨σm−1, σm⟩ ≃M σA

n

)
.

(b) All emitted leaks are modeled: For every leak λ (σi−1, σi ) ∈ λm observable in
hardware, there exists a leak λA(σA

j ) ∈ λA

n in the contract and a function fλ that
produces the output of λ from the output of λA, whenever ⟨σ−1, σ0 ⟩ ≃M σA

0 :

∀λ ∃λA, fλ∀σ−1, σ0 , σA
0 :

(
⟨σ−1, σ0 ⟩ ≃M σA

0
)

⇒ fλ

(
λA

(
σA

j

))
= λ

(
σi−1, σi

)
.

2.6 Hardware Verification Procedure
As directly proving compliance of every possible program execution is computationally
infeasible, Bloem et al. [BGG+22] showed that verification of a single instruction execution
is sufficient to inductively prove compliance for arbitrary programs as defined in Definition 3.
Their proposed verification procedure consists of the following steps:

1. Verifying that states remain related. The first verification step is to ensure
that starting from similar states σj−1, σj and σA

j , contract and hardware states remain
related after executing any valid instruction. This is achieved by encoding the condition
as one SAT query per cycle, up to the longest possible cycle count for a single instruction.

2. Finding modeling functions for gates. Before verifying gate leakage, an
intermediate step is required to restrict the values of gates in the previous state. This is
necessary as the contract does not model every aspect of execution and leaving gates as



8 Leakage Contracts for Processors with Transitions and Glitches

unrestricted variables would allow the solver to assume gates as functionally dependent on
shares, even if they are not. To determine which gate depends on which state register, at
most one SMT query per pair of gate and state register is required.

3. Verifying that leaks are modeled. The actual verification of the leakage of
each gate is modeled by a single leak statement in the contract is performed by encoding
this 2-safety hyperproperty as two instances of the hardware and contract, unrolling the
hardware for each cycle of the instruction execution. We discuss the encoding of glitch
leakage in Chapter 3. This step requires at most one SMT query per combination of gate,
cycle, and leak statement.

2.7 Software Compliance with a Contract or Hardware
In this section we define what it means for software to be compliant with a contract for
t-probing security. We verify t-probing security of the software with respect to a contract,
closely following the definition of probing security by Bloem et al. [BGG+22]. While
they use the t-(S)NI security notion, we opt for verifying t-probing security, as t-(S)NI
implementations trade ease-of-verification at the cost of higher randomness requirements.

For a masked computation f : ⟨x, p, r⟩ 7→ ⟨y, q, λ⟩, its inputs consist of shared secret
input values, public values and uniform random values, whereas its output consists of shared
secret outputs, public values and leaks. In a concrete machine code implementation of a
masked computation, its inputs are located in the processor state (either σA for the contract,
or σ for hardware), which consists of locations. The initial and final position of these
variables within the state σA can be formalized through input (respectively output) policies
πin : ⟨x, p, r⟩ ↔ σ (respectively πout : σ ↔ ⟨y, q⟩), which link the inputs (respectively
outputs) to corresponding locations in the contract. A machine code execution, together
with the input and output policies, defines a masked computation.

Definition 4 (⟨ nA−→, πA
in, πA

out⟩ defines a masked computation). Let A be a contract,
πA

in : ⟨x, p, r⟩ ↔ σA be an input policy and πA
out : σA ↔ ⟨yA, qA⟩ be an output policy.

Furthermore, let σA
0 = πA

in(x, p, r) be a state, ⟨σA
0 , ⟨⟩⟩ nA−→ ⟨σA

n, λA

n⟩ be an execution of n in-
structions, and ⟨yA, qA⟩ = πA

out(σA
n). Then ⟨x, p, r⟩ 7→ ⟨yA, qA, λA

n⟩ is a masked computation
in contract A.

Definition 5 (⟨ m−→, πin, πout⟩ defines a masked computation). Let be a hardware circuit,
πin : ⟨x, p, r⟩ ↔ σ be an input policy and πout : σ ↔ ⟨y , q ⟩ be an output policy.
Furthermore, let σ0 = πin(x, p, r) be a state, ⟨σ−1, σ0 , ⟨⟩⟩ m−→ ⟨σm−1, σm, λm⟩ be an
execution of m clock cycles, and ⟨y , q ⟩ = πout(σm). Then ⟨x, p, r⟩ 7→ ⟨y , q , λm⟩ is a
masked computation in hardware circuit .

Finally, Bloem et al. [BGG+22] show that all information accessible to an attacker
observing side-channel information of a machine code execution on hardware is also
accessible by an attacker observing an execution of the same machine code on a contract
A the hardware complies with.
Theorem 1 (Model Reduction [BGG+22]). Let A be a contract and be a compliant
hardware circuit. Furthermore, let ⟨x, p, r⟩ 7→ ⟨yA, qA, λA

n⟩ and ⟨x, p, r⟩ 7→ ⟨y , q , λm⟩ be
masked computations and ⟨σA

0⟩, respectively ⟨σ−1, σ0 ⟩ be the initial states of their execution
in A and , as was the case in Definitions 4 and 5. Whenever ⟨σ−1, σ0 ⟩ ≃M σA

0 , then

y = yA, q = qA, and2 (2)
∀λ

(
σi−1, σi

)
∈ λm ∃fλ, λA

(
σA

j

)
∈ λA

n : fλ

(
λA

(
σA

j

))
= λ

(
σi−1, σi

)
. (3)

Proof. The proof follows directly from compliance of with A (cf. Definition 3).

2In reality, q can also contain constant control signals not in qA and ignored in this equality.
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3 Leakage Models for Glitches and Transitions
In this section we introduce our extended leakage model for glitches and transitions. Using
this model, we construct a contract for the Ibex [low] processor and show how it is modeled
in the C language. We further show how to efficiently encode our glitch-aware leakage model
in the hardware compliance verification procedure introduced by Bloem et al. [BGG+22].

3.1 A Precise Transition-Glitch Leakage Model
A natural way to define a leakage function λg that over-approximates the two common
notions of glitch and transition leakage is to define λg(σi−1, σi ) := Cg(σi−1) ∥ Cg(σi ).
However, this definition is agnostic to the actual state values σi−1 and σi , leading to an
over-approximation that also considers physically impossible leakage scenarios, as noted
by Gigerl et al. [GHP+21]. We illustrate this in Example 1, where an And gate does not
allow a glitch to propagate, and avoids this worst-case leakage.
Example 1. Let us consider a circuit = ⟨G, W, T, P ⟩ with gates {a, b, c} ⊂ G and
{⟨a, pin0 , c⟩, ⟨b, pin1 , c⟩} ⊂ W . Moreover, let θ(a) = tin, θ(b) = treg, and θ(c) = tand.
Here, {a, b} ⊂ V and Cc = {a, b}, with c(σ ) = a(σ ) ∧ b(σ ). For an execution
σ0 −→ σ1 , the naive combined transition-glitch leakage model would claim leakage
λc(σ0 , σ1 ) = a(σ0 ) ∥ a(σ1 ) ∥ b(σ0 ) ∥ b(σ1 ). While this is exact when both the values of a
and b are unknown in both clock cycles, it overapproximates heavily when either of them is
known to be ⊥ in both clock cycles (e.g., it is a control signal independent of data). Assume
that a(σ0 ) = ⊥ and a(σ1 ) = ⊥. In this case, signal a would not experience a transition,
meaning its value would be stable. Because of the way And gates are built in CMOS, this
would result in c also remaining stable with value ⊥, not leaking information about b due
to glitches. In reality, an adversary observing c would not learn any information about the
value of b from glitches in state σ1 , whereas the naive combined transition-glitch leakage
model states they would.

The way to improve the leakage over-approximation is to make λg dependent on whether
or not the inputs of g can experience value fluctuations due to transitions and glitches,
as well as the gate type θ(g) of g. In the following, we propose a more precise encoding
for leakage λg(σi−1, σi ). For any hardware location V ⊆ G, an idealized adversary can
observe transitions between the previous and current state, same as in the transition
leakage model, i.e., λg(σi−1, σi ) := g(σi−1) ∥ g(σi ) for g with θ(g) ∈ {treg, tin}.

For And gates, we model the forwarding of input leakage through transitions and
glitches depending on the values of the other input. Because of the CMOS properties of
And gates, the leakage of input at port pin0 is forwarded only if the other input can attain
the value ⊤ at any point throughout the clock cycle. For an And gate c, with input wires
⟨a, pin0 , c⟩ and ⟨b, pin1 , c⟩, this forwarding behavior for the input at port pin0 is described
by the higher order function

land
(
λa, λb, σi−1, σi

)
:=

(
λb

(
σi−1, σi

)
= 𝟘

)
? 𝟘 : λa

(
σi−1, σi

)
, (4)

where 𝟘 is a vector of ⊥ values with appropriate size, and x ? y : z is the bitwise conditional
operator that returns y if x = ⊤ and z otherwise. The behavior for the other port is
symmetric. The transition-glitch leakage of And gate c is then defined as

λc

(
σi−1, σi

)
:= land

(
λa, λb, σi−1, σi

)
∥ land

(
λb, λa, σi−1, σi

)
. (5)

Since Or gates are also non-linear and symmetric, they have a very similar leakage
behavior to And gates. If c were instead an Or gate (i.e., θ(c) = tor), we would have

lor
(
λa, λb, σi−1, σi

)
:=

(
λb

(
σi−1, σi

)
= 𝟙

)
? 𝟙 : λa

(
σi−1, σi

)
, and (6)

λc

(
σi−1, σi

)
:= lor

(
λa, λb, σi−1, σi

)
∥ lor

(
λb, λa, σi−1, σi

)
, (7)
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where 𝟙 is a vector of ⊤ values with appropriate size.
Unlike the non-linear gate types And and Or, linear gate types like Xor and Not

always forward the leakage of their inputs and make them observable through glitches.
Therefore, if c was a Not gate, with ⟨b, pin1 , c⟩ /∈ W since there is only one input port, an
adversary would observe λc(σi−1, σi ) := ∼ λa(σi−1, σi ), with operator ∼ x representing a
bitwise negation of vector x. Similarly, if c were instead an Xor gate (i.e., θ(c) = txor), we
would have

lxor
(
λa, λb, σi−1, σi

)
:=

(
λb

(
σi−1, σi

)
= 𝟙

)
? ∼ λa

(
σi−1, σi

)
: λa

(
σi−1, σi

)
, and (8)

λc

(
σi−1, σi

)
:= lxor

(
λa, λb, σi−1, σi

)
∥ lxor

(
λb, λa, σi−1, σi

)
. (9)

Here, the bitwise negation in case one of the inputs is 𝟙 is necessary to correctly capture
the behavior of an Xor gate when both inputs are stable.

The leakage behavior of negated gate variants like Nand, Nor and Xnor can be
achieved by applying a bitwise negation ∼ to the definitions for the And, Or and Xor
gates. Similarly, the behavior of multiplexer gates can derived from the formulas for And,
Or and Not gates using the transformation (x ? y : z) ⇔ ((x ∧ y) ∨ (¬x ∧ z)).

3.2 Expressing Contracts in C
A hardware contract implements the semantics of the execution of a single instruction
⟨σA

j , λA

j ⟩ A−→ ⟨σA

j+1, λA

j+1⟩, specifying the architectural behavior of the instruction set and
the corresponding leakage behavior. Contracts written in C do this by implementing the
step_cpu function. The contract states σA

j and σA

j+1 consist of the values of C variables
before and after execution of the step_cpu function. Leaks are modeled by invocations
of the variadic function leak. For example, calling leak(a, b) emits a leak of the
concatenation of its parameters a and b. The accumulation of leaks works according to the
small step semantics specified in Equation 1. Additionally, the step_cpu function’s boolean
return value specifies if the contract permits the execution of a given instruction in a given
initial state. This is used to ensure that normal operating conditions are maintained, i.e.,
no invalid instructions may be executed.

Addressing C’s lack of native support for arbitrary length numeric types, the contract
runtime library provides the bitvector datatype bv, which is parametrizable to any length.
It allows developers to emulate register-transfer-level constructs analogous to System
Verilog’s logic. The bv datatype mimics C’s built-in numeric types, supporting both
logical and arithmetic operations. Constants are sourced using the bv_const macro, and
the slice macro extracts bit ranges, creating new bitvectors of the desired size.

Listing 1 shows the state variables used to model the Ibex processor. Both registers
from the ISA and shadow registers used to model the leakage behavior are defined as
global variables. In Listing 2 we define the step_cpu function for the Ibex processor,
which sets the default value for next_pc and defers the actual decoding and execution to
the execute function. There the seven bit opcode is extracted from the instruction and the
appropriate implementation is called.

3.3 Modeling Glitches of the Ibex Processor
In addition to the functional specification, a contract must model the leakage behavior
of CPUs. To accurately describe the leakage behavior with respect to glitches, the
implementation details of specific microarchitectural components, such as the read and
write ports of register files and memory, are essential. We analyze the variant of Ibex
that performs the instruction decode, execution and writeback stages in a single cycle.
Thus, glitches that arise anywhere in those stages can potentially propagate to successive



Johannes Haring , Vedad Hadžić and Roderick Bloem 11

Listing 1: Contract model of state for
the RV32E instruction set.
typedef struct regfile {

bv <32 > x1 , x2 , ... , x15;
} regfile_t ;
// architectural registers
reg pc;
reg next_pc ;
regfile_t regs;
// leakage registers
regfile_t prev_regs ;
bv <32 > mem_last_addr ;
bv <32 > mem_last_read ;
bv <5> prev_rd ;
bv <5> prev_rs1 ;
bv <5> prev_rs2 ;

Listing 2: Step function of IBEX the
contract.
bool step_cpu (bv <32 > op) {

next_pc = pc + 4;
const bool ret = execute (op);
pc = next_pc ;
return ret;

}

rs1[0]

rs1[1]

x0

x1

x2

x3

· · ·

· · ·

· · ·

· · ·

· · ·

(a) Transition from rs1 = 2 to rs1 = 3

rs1[0]

rs1[1]

x0

x1

x2

x3

· · ·

· · ·

· · ·

· · ·

· · ·

(b) Transition from rs1 = 3 to rs1 = 1

Figure 1: Glitch propagation in the register file read port in the Ibex processor when
changing the value of rs1. Green wavy wires represent λg(σi−1, σi ) = 𝟙, whereas red
dashed wires represent λg(σi−1, σi ) = 𝟘. The symbol specifies where value propagation
through glitches is stopped.

stages. In the worst case, glitches arising from the read ports of register file or memory
can propagate to the write ports of the register file or memory.

In the RISC-V ISA, each instruction may specify up to two source registers, which
are read from the register file read ports. Those source registers are specified on fixed
locations in the instruction opcode. Bits 15 to 19 specify source register 1, while bits 20 to
24 specify source register 2. The Ibex implementation of RISC-V fetch these values from
the register file regardless of the instruction currently executing, Figure 1 illustrates the
implementation of register file read ports on the netlist level, only showing the first four
registers and two bits of the register index. First, the register index from the instruction
opcode is decoded to a one-hot signal for each register using a series of Not and Or gates.
The resulting one-hot encoding is combined with the output ports of the corresponding
registers through a layer of And gates. Finally, a tree of Or gates produces the value of
the selected register.

Modeling the transition leakage of this construct would require leaking a combination
of the values read in the current and previous instructions. In our extended leakage model,
glitches can cause registers that were not used in either instruction to propagate their
values to the output of the register file read port. In the worst case, all registers could be
combined in a single cycle, leaking the combination of the entire register file. For example,
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if the value of the read port switches from x1 to x2, rs1[0] would transition from ⊤ to
⊥ and rs1[1] would transition from ⊥ to ⊤. Those transitions cause the outputs of the
one-hot decoding Or gates to become unstable. This can lead to all one-hot selector bits
to ephemerally assume the value ⊤, causing all registers to propagate to the output of the
read port.

Efficient implementations of software masking require multiple shares of the same secret
to reside in the register file simultaneously, which would be insecure if the entire register
file is leaked in every cycle. To enable such optimized implementations, it is necessary to
identify conditions under which the glitch propagation is terminated before the register
file output, resulting in leakage that only combines parts of the register file. This is the
case whenever a signal of the one-hot encoding is stable with the value ⊥, causing the
And gates to terminate glitch propagation of the respective register. Figure 1a shows
this behavior when switching the register index from x2 to x3, which only causes those
two registers to be combined, while the one-hot decoded signals for the other registers
remains stable. Figure 1b shows the same effect when switching from x3 to x1, where
rs1[0] remains stable, preventing the propagation of x0 to x2. While this example only
shows four registers, the principle applies to the entire register file of the Ibex, which can
be configured with 32 registers and five index bits for RV32I or 16 registers and four index
bits for RV32E. While the described system scales with the number of register bits, x0
is not an actual hardware register but rather a zero constant, which is why this value
is hardwired to zero in the Ibex processor. Each register bit that is stable, i.e., does
not change between instruction opcodes, halves the amount of unstable one-hot signals,
halving the number of register values that are propagated. In the worst case, this still
leads to a leak of all registers of the register file, e.g., when switching from x0 to x15 or
from x1 to x14, as all index bits transition in these cases.

To model the leakage in our contract, we emit three kinds of leakages. The common
leakage models all gates before the register writeback, while writeback leakage models the
remaining leaks emitted by the register writeback logic. Load instructions additionally leak
the load value from the memory bus, which is covered through the load leakage. In our
contract, common leakage and writeback leakage are modeled in the regfile_glitches
function shown in Listing 4, which is called regardless of the instruction. The load leakage
is modeled by the load_leakage function shown in Listing 5, which is only called when a
load instruction is executed.

Common Leakage. To model this common leakage of register file reads in the
contract, we define the glitchy_decode function, which uses bit-vector arithmetic to
determine which registers will be combined. Listing 3 shows the implementation, which
forms a mask of bits that have transitioned from the previous instruction (only four index
bits are used if the contract is compiled for RV32E). The function then returns a vector
of registers, where each entry either contains the register value or zero if the register is
not leaked. We apply this to the values of both register read port values in the current
and previous cycle and jointly leak the results with the last memory address and memory
read value. For load instructions, a variant of this leak statement is emitted, which also
leaks the load value from the memory bus. Together, those two leak statements form the
common leakage, which can simulate the leakage of the entire Ibex CPU, except for the
register writeback.

Writeback Leakage. Figure 2 illustrates the writeback stage of the Ibex processor.
The register writeback has a similar structure and leakage behavior to the register read
ports. The destination register index rd, which is part of the instruction’s opcode, is
one-hot decoded through the same scheme of Not and Or gates as the register read
ports. The results are used as the selector inputs of multiplexer gates that either select
the previous value of the register or the writeback value if the register is to be assigned
a new value. If the one-hot decoding of rd for a register is unstable, the multiplexers
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x0

one-hotrd

5

wb data

x1

write enable

...

Figure 2: Register file write port in the Ibex processor.

Listing 3: Model of register file read port leakage in the Ibex contract.

regfile_t glitchy_decode ( const regfile_t * regfile , bv <5> idx ,
bv <5> prev_idx ) {

bv <5> mask = (idx ^ prev_idx ^ bv_const (0 b11111 , 5)) & REGIDX_BITS ;
const bv <5> pattern = (idx & mask);
regfile_t res = {

(( bv_const ( 1, 5) & mask) == pattern ) ? regfile ->x1 : 0,
(( bv_const ( 2, 5) & mask) == pattern ) ? regfile ->x2 : 0,
// omitted ...
(( bv_const (15 , 5) & mask) == pattern ) ? regfile ->x15 : 0

};
return res;

}

for the corresponding registers emit joint leakage of the writeback value and the register
output. If the one-hot decoding is stable and the value is ⊥, only the register value is
leaked. This behavior is modeled in the contract by emitting one leak per register, which
leaks the register value and, depending on the transitions in rd, appends the values from
the common leakage.

Load Leakage. Load instructions on the Ibex processor take at least two cycles to
process. In the first cycle of execution a load instruction, the LSU issues a request to load
a specific address to the memory bus. One or more cycles later, the memory responds with
the value stored at the requested address. To model the leakage of load instructions, both
cycles have to be considered separately. To simulate the first cycle of a load instruction, it
is sufficient to emit the common leakage, as the response from the memory bus cannot
leak into the CPU before the second cycle. To simulate the second cycle, only values from
the first and second cycle can be leaked, while values from the previous instruction have
no influence. Most of the control signals in the CPU are stable after the first cycle, as
execution is stalled until the memory bus responds with the requested data. To model
the leaks caused in the second cycle of a load instruction, only the stable value of rs1,
mem_last_addr and the load value req_data need to be leaked. Similarly to the writeback
leakage for other instructions, the write ports of the register file can be covered by emitting
one leak per register, conditionally combined with the load leakage.

3.4 Efficient Encoding of Glitches for Hardware Verification
The heart of the hardware compliance (cf. Definition 3) verification procedure outlined by
Bloem et al. [BGG+22] is the way they prove the existence of a function fλ that always maps
the value of a contract leak λA(σA

j ) to the value of a hardware leak λ (σi−1, σi ). Without
going into too much detail or formalism, their method relies on showing that there are no
state triples ⟨σ−1, σ0 , σA

0⟩ and ⟨σ̂−1, σ̂0 , σ̂A
0⟩ where

(
⟨σ−1, σ0 ⟩ ≃M σA

0
)
,

(
⟨σ̂−1, σ̂0 ⟩ ≃M σ̂A

0
)
,

and λA(σA

j ) = λA(σ̂A

j ) but λ (σi−1, σi ) ̸= λ (σ̂i−1, σ̂i ). Showing this property is sufficient
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Listing 4: Ibex Contract leaks for common leakage and writeback leakage.

void regfile_glitches (bv <32 > op) {
const bv <5> rd = slice (op , 11, 7);
const bv <5> rs1 = slice (op , 19, 15);
const bv <5> rs2 = slice (op , 24, 20);
regfile_t glitchy_rs1_val = glitchy_decode (& regs , rs1 , prev_rs1 );
regfile_t glitchy_prev_rs1_val = glitchy_decode (& prev_regs , rs1 ,

prev_rs1 );
regfile_t glitchy_rs2_val = glitchy_decode (& regs , rs2 , prev_rs2 );
regfile_t glitchy_prev_rs2_val = glitchy_decode (& prev_regs , rs2 ,

prev_rs2 );
// common leakage
leak( mem_last_addr , mem_last_read ,

rf_to_bv ( glitchy_rs1_val ), rf_to_bv ( glitchy_prev_rs1_val ),
rf_to_bv ( glitchy_rs2_val ), rf_to_bv ( glitchy_prev_rs2_val ));

// writeback leakage
bv <5> mask = ( prev_rd ^ rd ^ bv_const (0 b11111 , 5)) & REGIDX_BITS ;
const bv <5> pattern = (rd & mask);
for (int i = 1; i < NUM_REGS ; i++) {

if (( bv_const (i, 5) & mask) == pattern ) {
leak(rX (& regs , i), rX (& prev_regs , i),

mem_last_addr , mem_last_read ,
rf_to_bv ( glitchy_rs1_val ), rf_to_bv ( glitchy_prev_rs1_val ),
rf_to_bv ( glitchy_rs2_val ), rf_to_bv ( glitchy_prev_rs2_val ));

} else {
leak(rX (& regs , i), rX (& prev_regs , i));

}
}

}

to imply that there must be a function fλ computing λ (σi−1, σi ) from λA(σA

j ).
Directly encoding the leakage model as specified in Section 3.1 is not realistic, since the

length of λg (σi−1, σi ) is exponential in the number of locations in the cone Cg of gate g.
However, this exponential encoding is not necessary to express the existance of state triples
⟨σ−1, σ0 , σA

0⟩ and ⟨σ̂−1, σ̂0 , σ̂A
0⟩ where λg (σi−1, σi ) ̸= λg (σ̂i−1, σ̂i ). It turns out that it is

sufficient to encode the stability τg(σi−1, σi , σ̂i−1, σ̂i ) of gate g, i.e., the equivalence of
λg (σi−1, σi ) ∥ λg (σ̂i−1, σ̂i ) with either 𝟘 or 𝟙, and the difference δg(σi−1, σi , σ̂i−1, σ̂i ), i.e.,
λg (σi−1, σi ) ̸= λg (σ̂i−1, σ̂i ).

Stability. The stability τg(σi−1, σi , σ̂i−1, σ̂i ) of locations g ∈ V is encoded as

τg

(
σi−1, σi , σ̂i−1, σ̂i

)
:= g

(
σi

)
= g

(
σi−1

)
∧ g

(
σ̂i

)
= g

(
σ̂i−1

)
∧ g

(
σi

)
= g

(
σ̂i

)
. (10)

Trivially, whenever τg(σi−1, σi , σ̂i−1, σ̂i ) = ⊤, then λg (σi−1, σi ) ∥ λg (σ̂i−1, σ̂i ) is either 𝟙
or 𝟘. Moreover, negations through Not gates do not change stability, so a gate c with
θ(c) = tnot and ⟨a, pin0 , c⟩ ∈ W , would have τc(σi−1, σi , σ̂i−1, σ̂i ) = τa(σi−1, σi , σ̂i−1, σ̂i ).

Non-linear And and Or gates can have a stable value if one of their inputs is stable
with an appropriate value. For an And gate c with input wires ⟨a, pin0 , c⟩, ⟨b, pin1 , c⟩ ∈ W ,
its stability is

τc

(
σi−1, σi , σ̂i−1, σ̂i

)
:=

(
τa

(
σi−1, σi , σ̂i−1, σ̂i

)
∧ τb

(
σi−1, σi , σ̂i−1, σ̂i

))
∨(

τa

(
σi−1, σi , σ̂i−1, σ̂i

)
∧ ¬a

(
σi−1, σi

))
∨(

τb

(
σi−1, σi , σ̂i−1, σ̂i

)
∧ ¬b

(
σi−1, σi

)) , (11)

whereas the definition for an Or gate has the same structure, but the terms a(σi−1, σi )
and b(σi−1, σi ) are not negated. This corresponds to definition (5) where λc (σi−1, σi ) ∥
λc (σ̂i−1, σ̂i ) is 𝟙 if both λa(σi−1, σi ) ∥ λa(σ̂i−1, σ̂i ) and λb (σi−1, σi ) ∥ λb (σ̂i−1, σ̂i ) are 𝟙,
and 𝟘 if either input is 𝟘. The case for Or gates is analogous, corresponding to (7).
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Listing 5: Contract leaks for load leakage.

void load_leakage ( const reg op , reg addr , reg req_data )
{

const bv <5> rd = slice (op , 11, 7);
const bv <5> rs1 = slice (op , 19, 15);
leak(rX (& regs , rs1), mem_last_addr , req_data );
for (int i = 1; i < NUM_REGS ; i++) {

if ( bv_const (i, 5) == rd) {
leak(rX (& regs , i), rX (& regs , rs1), mem_last_addr , req_data );

} else {
leak(rX (& regs , i));

}
}
mem_last_read = req_data ;
mem_last_addr = addr;

}

As for Xor gates, as can be seen in definition (9), the leakage of such a gate c is only
stable if its inputs are 𝟘 or 𝟙. Analogously, we have the stability definition

τc

(
σi−1, σi , σ̂i−1, σ̂i

)
:=

(
τa

(
σi−1, σi , σ̂i−1, σ̂i

)
∧ τb

(
σi−1, σi , σ̂i−1, σ̂i

))
. (12)

Finally, the stability of negated gate versions Nand, Nor, and Xnor has the same
definition as their non-negated counterparts And, Or, and Xor.

Difference. The difference δg(σi−1, σi , σ̂i−1, σ̂i ) encodes if λg (σi−1, σi ) ̸= λg (σ̂i−1, σ̂i ).
Appropriately, for locations g ∈ V , the difference is encoded as

δg

(
σi−1, σi , σ̂i−1, σ̂i

)
:=

(
g

(
σi−1

)
̸= g

(
σ̂i−1

))
∨

(
g

(
σi

)
̸= g

(
σ̂i

))
, (13)

trivially encoding λg (σi−1, σi ) ̸= λg (σ̂i−1, σ̂i ). Similarly, Not gates do not change the
difference, with δc(σi−1, σi , σ̂i−1, σ̂i ) := δa(σi−1, σi , σ̂i−1, σ̂i ), and Xor gates inherit the
difference if either input has a difference, same as in definition (9), with

δc(σi−1, σi , σ̂i−1, σ̂i ) := δa(σi−1, σi , σ̂i−1, σ̂i ) ∨ δb(σi−1, σi , σ̂i−1, σ̂i ). (14)

For And gates, the definitions (4) and (5) suggests that the output c inherits a difference
from input a if input b is either unstable or 𝟙, and vice versa. Thus, for an And gate c:

δc

(
σi−1, σi , σ̂i−1, σ̂i

)
:= δa

(
σi−1, σi , σ̂i−1, σ̂i

)
∧

(
¬τb

(
σi−1, σi , σ̂i−1, σ̂i

)
∨ b

(
σi−1, σi

))
∨

δb

(
σi−1, σi , σ̂i−1, σ̂i

)
∧

(
¬τa

(
σi−1, σi , σ̂i−1, σ̂i

)
∨ a

(
σi−1, σi

))
.

(15)
The encoding for Or gates is similar, with the a(σi−1, σi ) and b(σi−1, σi ) terms being
negated. Moreover, the encoding for negated gate veriants Xnor, Nand, Nor is the same
as for these non-negated variants listed.

4 Software Compliance Verification
In this section we describe how we verify end-to-end security of a system by verifying
compliance of a program with respect to a contract. In Section 4.1 we show that software
compliance implies end-to-end security under the t-probing model by proving that when
a processor’s hardware complies with a contract, the contract effectively models all
gate-level leakages. We then give an overview of our software compliance verification
approach. Starting from a user-defined initial state, we use symbolic execution to obtain
the leakage of a program execution. While the resulting leakage trace can be verified
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with any masking verification approach, we utilize the verification approach introduced by
Gigerl et al. [GHP+21], with is based on the over-approximation of correlations between
secrets and leaked values.

4.1 End-to-end t-Probing Security
Software implementations compliant with a contract can be executed on any compli-
ant hardware. While this property has been shown to hold for the t-(S)NI probing
model [BGG+22], we provide a proof that the same property holds for the less restricting
t-probing security notion of Definition 1.

Theorem 2 (End-to-end t-probing security). Let the setting be as in Theorem 1, and
let ⟨σ−1, σ0 ⟩ ≃M σA

0 . If ⟨x, p, r⟩ 7→ ⟨yA, qA, λA

n⟩ is t-probing secure, then ⟨x, p, r⟩ 7→
⟨y , q , λm⟩ is also t-probing secure.

Proof. From Theorem 1, we know that for every tuple e ⊆ λm, there is tuple eA ⊆ λA

n, and
functions fλ,i such that ei = fλ,i(eA

i ). Interpreting functions fλ,i as coordinate functions
of fλ, we have e = fλ(eA). Since x → eA → fλ(eA) is a markov chain, we can apply the
data-processing inequality to get

I
(
x; p, q , e

)
= I

(
x; p, qA, fλ(eA)

)
≤ I

(
x; p, qA, eA

)
. (16)

Whenever |e | = |eA| ≤ t, t-probing security of ⟨x, p, r⟩ 7→ ⟨yA, qA, λA

n⟩ implies that
I

(
x; p, qA, eA

)
= 0. The non-negativity of mutual information, together with (16) gives

I
(
x; p, q , e

)
= 0, and therefore ⟨x, p, r⟩ 7→ ⟨y , q , λm⟩ is also t-probing secure.

4.2 Software Compliance Verification Concept
Verification of software compliance is performed in three consecutive stages:

1. Initial State Definition. Before verification, the initial state of the program
must be explicitly defined by the user. This entails specifying the contents of registers and
memory. Random shares and masks are specified as symbols, while all other values are
concrete. This distinction is necessary as verification must account for arbitrary values of
secrets, shares and masks.

2. Generation of Leakage Trace. As we perform verification for arbitrary values of
shares and masks, they are treated as symbolic variables while generating the leakage trace.
A representation of the leakage exhibited during the execution is obtained by symbolically
executing the contract until program termination. The outcome of the symbolic execution
is a sequence of leaks, each represented by a computation tree with secrets, masks and
constants as leaf nodes. To account for bit-sliced or n-sliced implementations, we perform
tracing on a user defined granularity, allowing multiple bits to be treated as one symbolic
value. This computational complexity of this step stems from the semantic of the contract,
but for practical purposes can be considered linear in the size of the program.

3. Analysis of Leaks. The symbolic representation of the leakage trace is agnostic to
the masking security model and verification method used. In this paper we verify t-probing
security by constructing correlation sets, which serve as an over-approximation of probing
security. The proof is then performed by translating t-probing security over correlation
sets into a single SAT problem, which can then be solved with any modern SAT solver.

4.3 Initial State Definition
Before simulation, the initial state of the system must be specified. This includes the
location of secrets, random shares and public values in the registers and memory. This
is achieved via a label file that has to be supplied for each program. Labels can include
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x1,8:0 0 1 0 1 x2,3:0a

x3,3:0 1 0 1 1 0 1 1 1 x4,3:0b

x1,8:4 ⊕ x3,3:0 x1,3:0 ⊕ 10112 0 0 1 0 x2,3:0 ⊕ x4,3:0a⊕b

Figure 3: Example of an exclusive-or between two 16-bit bitvectors, both containing
different sized slices of symbolic and concrete values.

constants, random, and secret values and can either apply to contract registers or memory
locations. Any state variable of the contract may be occupied by multiple slices of different
secrets, which is typical for bit-sliced and word-sliced implementations. Figure 3 shows
an example configuration of contract variables a and b, each containing a combination of
symbolic shares and concrete values.

4.4 Generating Leakage Traces

Execution of machine code in a contract A is based on its semantics ⟨σA
0 , ⟨⟩⟩ nA−→ ⟨σA

n, λA

n⟩,
which we implement by combining the contract with our symbolic tracing library to obtain
an optimized simulator for the contract. Each time a leak statement in the contract is
executed, a symbolic representation of its parameters is recorded. These records form the
list of symbolic leak invocations λA

n at the end of execution.
The bv class represents a concatenation of bitvector slices, each representing either a

concrete value or a symbolic expression. The granularity of tracing is user-defined through
the initial state configuration. Different levels of granularity provide a trade-off between
accuracy and verification time. For bit-sliced implementations it might be necessary to
perform tracing for individual bits, while for n-sliced implementations it is sufficient to
trace register values in a granularity of n-bit sized slices.

To denote a slice of multiple secret bits we write xn,e:s = (xn,e, . . . , xn,s). To be
consistent with the typical notation in hardware design, the second index is the start and
the first is the end of the series. After the initial state of the memory and the contract’s
register and leakage state variables has been assigned, the contract is executed according to
the semantics of the C programming language. Whenever the contract performs operations
on bitvectors, new bitvectors are created that preserve as much generality of the symbolic
representation as possible. For example, the result of an exclusive or between two bitvectors
a = (x1,1, x2,1) and b = (x1,2, x2,2) is the bitvector c = (x1,2 ⊕ x2,1, x2,1 ⊕ x2,2) where
each slice is calculated individually. This is important for bit-sliced implementations, as
merging the slices into a single expression would result in combined leakage of all slices.

Figure 3 shows a more elaborate example. When performing an operation on two
bitvectors consisting of slices of different lengths, new slices must be formed. For logical
operations (such as Not, And, Or, Xor), each output bit can be computed from the
single corresponding bit of each input. The result of logical operations between two bv
instances are slices that overlap in both input vectors.

For other operations, such as arithmetic operations, a single output bit may depend on
multiple input bits. Since arithmetic operations are not needed for the implementation
of Boolean masked implementations, we over-approximate the result by combining all
input slices through an uninterpreted function. To minimize the complexity and memory
consumption of symbolic expressions, we perform a simplification of all slices of a bv
computation result. Table 1 shows the rules used for simplification.

The leakage behavior of a contract is characterized by invocations of the leak function.
Each invocation saves a copy of all fragments of all of its arguments as a symbolic expression.
Tracing results is a list of symbolic leaks used to prove software compliant with the contract.
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Table 1: Simplification rules for symbolic tracing. The symbolic template f is simplified
to f ′. Vector a denotes a vector containing secrets or masks, 𝟘 and 𝟙 denote vectors with
all values 0 and 1 respectively.

Operation type f f ′

Linear a ⊕𝟘 a
a ⊕𝟙 a

Non-linear (logical)

a ∧𝟘 𝟘
a ∧𝟙 a
a ∨𝟘 a
a ∨𝟙 𝟙

Operation type f f ′

Arithmetic a +𝟘 a
a −𝟘 a

Shift (SLL, SRA, SRL) a << 𝟘 a
𝟘 << a 𝟘

4.5 Correlation Sets and SAT Encoding

The leakage trace resulting from symbolic simulation can be verified with any suitable
software or hardware leakage verification tool, such as Coco [GHP+21], Silver [KSM20],
MaskVerif [BBC+19] or VerifMSI [MT23]. To make our results more comparable we
chose the verification strategy of COCO, as it verifies security with regard to gate-level
leakage. We give a brief overview of the verification approach, while referring to the
original publication [GHP+21] for a more in-depth elaboration of the verification process.
Directly verifying the statistical independence of secrets and leaks if computationally
infeasible [HB21]. Instead it is sufficient to track the over-approximation of the Fourier
expansions of Boolean functions originally employed by Bloem et al. [BGI+18]. Each
argument of each leak invocation is translated into a corresponding correlation set. Cor-
relation sets are constructed recursively according to the symbolic computations. The
verification of t-probing security is then performed by encoding the attackers ability to
place t probes as a choice of t leaks during the execution of the contract. We then verify
that no combination of t leak statements correlates to the secrets by encoding the problem
as a Boolean formula, efficiently solvable via a single query to a modern SAT solver.

5 Experiments

To demonstrate the practicality of our extended leakage model and verification tool, we
construct a leakage contract for the Ibex processor. The modular verification approach
of contracts allows proving hardware and software compliance individually, ensuring
compatibility without requiring reverifying unchanged components.

5.1 Verifying the Ibex processor

To prove hardware compliance of our contract with the Ibex processor with our tool,
we provide the contract and additional configuration for the hardware verifier. The
configuration defines normal operating conditions of the processor via constraints on
the hardware state and includes a mapping between hardware and contract registers.
All of the fully automated verification steps were performed on an Intel Xeon E5-4669
CPU with 88 logical cores at 2.2 GHz clock speed. Verification that the contract and
hardware registers stay equivalent under normal operating conditions takes approximately
40 minutes. Finding the set of contract variables that can simulate the pre-cycle registers
can be achieved in 10 minutes. As a last step, all gate’s leakage effects must be proven
simulatable by contract leaks, which takes 11.3 hours. In total, verification of the Ibex
processor takes 12.1 hours. To the best of our knowledge, the only other published contract
verification tool for masking security is from Bloem et al. [BGG+22], who report a total
verification time of 35.5 hours, while only verifying transition leakage and ignoring glitches.
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Table 2: Verifying t-probing security of software implementations for Ibex results in the
same confirmation of security at reduced verification time and validates our approach.

Computation # Instr. Input shares Randomness
Verification runtime

Coco Ours

Bit-wise Word-wise

First-order
XOR 13 4 × 32 bit - 92 s 2 s 1 s
AND (DOM-dep reg.) 13 4 × 32 bit 1 × 32 bit 204 s 7 s 1 s
AND (DOM-dep) 24 4 × 32 bit 1 × 32 bit 428 s 7 s 1 s
AND (HPC1) 31 4 × 32 bit 2 × 32 bit 321 s 9 s 1 s
AND (TI) 36 6 × 32 bit - 384 s 7 s 1 s
AND (ISW) 33 4 × 32 bit 1 × 32 bit 392 s 8 s 1 s
Keccak S-box (DOM-dep) 424 10 × 32 bit 5 × 32 bit 4.9 m 4.2 m 1.1 m
AES S-Box (DOM-dep) 3196 16 × 16 bit 35 × 16 bit 4.1 h 3.8 h 15.5 m

Second-order
AND (DOM-dep) 40 6 × 32 bit 3 × 32 bit 623 s 15 s 3 s
AND (HPC1) 52 6 × 32 bit 5 × 32 bit 643 s 18 s 3 s

Third-order
AND (DOM-dep) 71 8 × 32 bit 6 × 32 bit 2.7 m 1.9 m 13 s
AND (HPC1) 89 8 × 32 bit 9 × 32 bit 2.9 m 2.1 m 13 s

5.2 Software Verification Experiments
We evaluate our software verification tool and Ibex contract by verifying multiple masked
implementations of gadgets and S-boxes. All implementations initially targeted non-
glitch-aware contracts and were insecure under our glitch-aware model, exemplifying the
importance of considering glitches in the hardware model. We modified the implementations
to adhere to our glitch-aware contract, sometimes requiring more instructions.

To demonstrate the runtime improvements of contracts compared to directly verifying
the hardware netlist, we verify the same implementations with Coco [GHP+21], which
implements the same verification strategy, but directly targets the design’s netlist. While
Coco is capable of including the system memory in the side-channel evaluation, we
explicitly exclude it in our experiments to provide a fair comparison to our tool. All
implementations operate on entire registers to handle shares, allowing bit-sliced processing
of up to 32 sharings simultaneously. We test our tools with two input share configurations
for each implementation, one that verifies on the word-level and one that verifies each
input bit individually, which is closer to the way Coco performs verification.

Table 2 shows the verification runtime results for both tools, all of which deemed the
implementations secure. Our bit-wise verification approach is faster than Coco, which
needs to parse and evaluate the processor netlist on every evocation, leading to slow
verification times for small programs. Verification on a word-granular level is significantly
faster than verification on a bit-granular level, as the solver does not need to perform the
proof for each bit individually. Compared to Coco, our word-wise verification approach is
faster by at least a factor of four.

6 Conclusion
We introduced extended hardware-side-channel leakage contracts that account for glitches
and transitions. Our model can be used to verify the compliance of the netlist of CPUs
with corresponding leakage contracts. Masked cryptographic software implementations
can then be independently verified against the contract, guaranteeing end-to-end security
of any compliant implementation on any compliant CPU netlist. By applying it to the
RISC-V Ibex core, we provide a practical demonstration of its capabilities, showing that
end-to-end verification of our glitch-aware leakage model is practically feasible.
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