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We performed the template attack 
using 100,000 power traces 
collected during the Forward NTT 
operation in the secret key generation 
for ML-KEM768 and ML-KEM1024, 
with noise parameter eta = 2.

The PCA plot reveals distinct 
clustering of trace features 
corresponding to different input 
coefficient pairs. Each cluster 
represents a unique label, showing 
that the power traces contain 
separable leakage patterns related to 
specific key and input values. 

This clear separation confirms that 
even a lightweight NTT design leaks 
sufficient information to enable 
effective classification. 

In this work, we used the lightweight hardware design from 
[2], which employs a single butterfly unit to efficiently perform 
NTT, INTT, and CWM operations for ML-KEM on FPGA 
platforms. 
We modified the design to enable side-channel analysis by 
exposing key intermediate operations. The measurement 
setup includes the CW305 Artix-7 FPGA board, a Pico 
oscilloscope, and a ChipWhisperer-Lite for trace collection 
and data communication.

Using PCA with 50 components and 
Mahalanobis distance for classification, 
we achieved an accuracy of 97.77%. 

The confusion matrix shows that most 
coefficient pairs are correctly classified. 
However, some misclassifications occur 
between the labels (2):(-1) and (1):(-1). 
Specifically, 104 traces labeled as 
(2):(-1) were predicted as (1):(-1), and 
74 traces labeled as (1):(-1) were 
predicted as (2):(-1). This suggests that 
the power consumption patterns for 
inputs “1” and “2” are highly similar, 
leading to confusion during 
classification.

These results highlight both the 
effectiveness and the subtle limitations 
of template attacks when 
input-dependent leakage overlaps.

This work demonstrates a template-based side-channel attack on a lightweight NTT accelerator used in ML-KEM. We modified the hardware design to expose key internal operations and collected 100,000 power traces during 
the forward NTT. Using PCA and Mahalanobis distance, we achieved 97.77% classification accuracy for coefficient pairs.

The PCA visualization showed clear clustering of different coefficient combinations, although some confusion occurred between inputs like 1 and 2 due to similar power usage. This highlights that even simple unprotected 
hardware designs can leak exploitable information.

These results indicate the possibility of reconstructing the entire secret key, especially for ML-KEM-768 and ML-KEM-1024, which use a limited set of coefficient values. Future work will focus on full key recovery and evaluating 
countermeasures such as masking and shuffling to enhance side-channel resistance in post-quantum hardware.
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PCA Compression
High-dimensional power traces are reduced to 
principal components using PCA. This step filters 
out noise and redundancy while retaining the most 
informative features, enabling efficient and 
accurate classification.

Train-Test Split
The dataset is divided into training and test sets. 
The training traces are used to build statistical 
templates, while the test traces are used for 
evaluation.

Template Building
For each coefficient pair (a, b), we compute a 
class-specific mean vector and covariance matrix 
in PCA space. These form the template 
representing the leakage profile of each class.

Classification with Mahalanobis Distance
Each test trace is compared to all class templates 
using the Mahalanobis distance, which accounts 
for both the center and shape of the distributions. 

Prediction & Evaluation
Predicted labels are compared against the true 
ones. A confusion matrix visualizes performance, 
and the overall classification accuracy is reported.

 The Module Lattice-based Key Encapsulation Mechanism 
(ML-KEM), formerly known as CRYSTALS-Kyber, is a lattice-based 
algorithm selected for post-quantum cryptography standardization [1]. 
Its performance relies heavily on the Number Theoretic Transform 
(NTT) for efficient polynomial multiplication. According to Algorithm 1, 
the secret key is encoded from the vector s, and as shown in Table 1, 
ML-KEM-768 and ML-KEM-1024 use the noise parameter eta1 = 2, 
meaning the coefficients of s come from a small set of values. 

 In this work, we demonstrate that by targeting the NTT 
operation—specifically the transformation of s to s_hat—side-channel 
analysis can be used to recover these coefficients. Since the entire 
secret key is derived from s, accurately classifying its values during 
the NTT enables full reconstruction of the secret key. To support this 
attack, we adopt and modify a lightweight NTT hardware design to 
expose critical leakage points for trace collection and profiling.

The Number Theoretic Transform (NTT) is used to convert s into its transformed version s_hat during key generation. In 
the first stage of the NTT, computations involve input-dependent coefficient pairs like s[i] and s[i + N/2], which are 
multiplied and added using precomputed constants. These operations create data-dependent intermediate values that 
may leak through power consumption. If these leakages are captured and analyzed, they can be used to infer the original 
values of s. Since the full secret key is derived from s, recovering its coefficients through template attack enables 
complete key reconstruction.

In ML-KEM hardware implementations, the secret 
vector s contains small coefficients sampled from a 
centered distribution. For example, when eta1 = 2, the 
possible values are [0, 1, 2, -1, -2]. Since hardware 
circuits operate over a finite field defined by the 
modulus q = 3329, negative values are represented 
using their modular equivalents: -1 becomes 3328 
and -2 becomes 3327. This mapping ensures all 
coefficients remain in the range [0, q-1].

STAGE 0

(s   , s    )0

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5 STAGE 6 STAGE 7

128 (s   , s    )1 129 (s   , s    )2 130 (s    , s    )125 253 (s    , s    )126 254 (s    , s    )127 255

Load input Butterfly operation Store output

address address

data

data

start
trigger

USB_data

USB_clock
NTT_clock

NTT_trigger

USB_R/W

USB_address
NTT accelator
for ML-KEM

NTT
register

USB
interface

ChipWhisperer Target
implementation

Host PC Oscilloscope

TARGET IMPLEMENTATION

Fig. 3: Measurement setup overview

Fig. 2: Modified NTT implementation

Fig. 1: Overview of general NTT operation
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Table 1: Parameter Sets for ML-KEM

Algorithm n q k η1 η2 du dυ

ML-KEM-512 256 3329 2 3 2 10 4

ML-KEM-768 256 3329 3 2 2 10 4

ML-KEM-1024 256 3329 4 2 2 11 5

Algorithm 1 Secret Key Generation for ML-KEM

Output: Secret key sk ∈ B12·k·n/8

1: d ← B32

2: (ρ, σ) ← G(d)
3: N ← 0
4: for i = 0 to k − 1 do � Sample s ∈ Rk

q from Bη1

5: s[i] ← CBDη1
(PRF(σ,N))

6: N ← N + 1
7: end for
8: ŝ ← NTT(s)
9: sk ← Encode12(ŝ mod q) � sk ← s

10: return sk
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