
Coefficient Classification Template Attack on the
NTT Accelerator for ML-KEM
Munkhbaatar Chinbat , Liji Wu , and Xiangmin Zhang

School of Integrated Circuits, Tsinghua University, Beijing, China
Beijing National Research Center for Information Science and Technology, Beijing, China

e-mail: lijiwu@tsinghua.edu.cn

Motivation - Breaking NTT accelerator Idea for Breaking NTT accelerator

Experimental Setup

Coefficient Classification Results

Coefficient Classification Template Attack

Template Attack

Extract power traces from target device

OscilloscopeTarget FPGAHost PC Power traces

PCA Compression

FPGA

Reduce to N=50 components

Template Building

Per (a,b) Pair Class:

Train-Test Split

(80% Training, 20% Test)

Classification on Test

References

Conclusion

Fig. 4: Template Attack with PCA + Mahalanobis

Fig. 5: PCA Visualization Fig. 6: Confusion Matrix

We performed the template attack
using 100,000 power traces
collected during the Forward NTT
operation in the secret key generation
for ML-KEM768 and ML-KEM1024,
with noise parameter eta = 2.

The PCA plot reveals distinct
clustering of trace features
corresponding to different input
coefficient pairs. Each cluster
represents a unique label, showing
that the power traces contain
separable leakage patterns related to
specific key and input values.

This clear separation confirms that
even a lightweight NTT design leaks
sufficient information to enable
effective classification.

In this work, we used the lightweight hardware design from
[2], which employs a single butterfly unit to efficiently perform
NTT, INTT, and CWM operations for ML-KEM on FPGA
platforms.
We modified the design to enable side-channel analysis by
exposing key intermediate operations. The measurement
setup includes the CW305 Artix-7 FPGA board, a Pico
oscilloscope, and a ChipWhisperer-Lite for trace collection
and data communication.

Using PCA with 50 components and
Mahalanobis distance for classification,
we achieved an accuracy of 97.77%.

The confusion matrix shows that most
coefficient pairs are correctly classified.
However, some misclassifications occur
between the labels (2):(-1) and (1):(-1).
Specifically, 104 traces labeled as
(2):(-1) were predicted as (1):(-1), and
74 traces labeled as (1):(-1) were
predicted as (2):(-1). This suggests that
the power consumption patterns for
inputs “1” and “2” are highly similar,
leading to confusion during
classification.

These results highlight both the
effectiveness and the subtle limitations
of template attacks when
input-dependent leakage overlaps.

This work demonstrates a template-based side-channel attack on a lightweight NTT accelerator used in ML-KEM. We modified the hardware design to expose key internal operations and collected 100,000 power traces during
the forward NTT. Using PCA and Mahalanobis distance, we achieved 97.77% classification accuracy for coefficient pairs.

The PCA visualization showed clear clustering of different coefficient combinations, although some confusion occurred between inputs like 1 and 2 due to similar power usage. This highlights that even simple unprotected
hardware designs can leak exploitable information.

These results indicate the possibility of reconstructing the entire secret key, especially for ML-KEM-768 and ML-KEM-1024, which use a limited set of coefficient values. Future work will focus on full key recovery and evaluating
countermeasures such as masking and shuffling to enhance side-channel resistance in post-quantum hardware.

National Institute of Standards and Technology, “Module-Lattice-Based Key-Encapsulation Mechanism Standard,” 8 2024, federal Information Processing Standards Publication 203.
[Online].Available:https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
F. Yaman, A. C. Mert, E. Ozturk, and E. Savas, “A hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-Kyber PQC Scheme,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1020–1025.

PCA Compression
High-dimensional power traces are reduced to
principal components using PCA. This step filters
out noise and redundancy while retaining the most
informative features, enabling efficient and
accurate classification.

Train-Test Split
The dataset is divided into training and test sets.
The training traces are used to build statistical
templates, while the test traces are used for
evaluation.

Template Building
For each coefficient pair (a, b), we compute a
class-specific mean vector and covariance matrix
in PCA space. These form the template
representing the leakage profile of each class.

Classification with Mahalanobis Distance
Each test trace is compared to all class templates
using the Mahalanobis distance, which accounts
for both the center and shape of the distributions.

Prediction & Evaluation
Predicted labels are compared against the true
ones. A confusion matrix visualizes performance,
and the overall classification accuracy is reported.

 The Module Lattice-based Key Encapsulation Mechanism
(ML-KEM), formerly known as CRYSTALS-Kyber, is a lattice-based
algorithm selected for post-quantum cryptography standardization [1].
Its performance relies heavily on the Number Theoretic Transform
(NTT) for efficient polynomial multiplication. According to Algorithm 1,
the secret key is encoded from the vector s, and as shown in Table 1,
ML-KEM-768 and ML-KEM-1024 use the noise parameter eta1 = 2,
meaning the coefficients of s come from a small set of values.

 In this work, we demonstrate that by targeting the NTT
operation—specifically the transformation of s to s_hat—side-channel
analysis can be used to recover these coefficients. Since the entire
secret key is derived from s, accurately classifying its values during
the NTT enables full reconstruction of the secret key. To support this
attack, we adopt and modify a lightweight NTT hardware design to
expose critical leakage points for trace collection and profiling.

The Number Theoretic Transform (NTT) is used to convert s into its transformed version s_hat during key generation. In
the first stage of the NTT, computations involve input-dependent coefficient pairs like s[i] and s[i + N/2], which are
multiplied and added using precomputed constants. These operations create data-dependent intermediate values that
may leak through power consumption. If these leakages are captured and analyzed, they can be used to infer the original
values of s. Since the full secret key is derived from s, recovering its coefficients through template attack enables
complete key reconstruction.

In ML-KEM hardware implementations, the secret
vector s contains small coefficients sampled from a
centered distribution. For example, when eta1 = 2, the
possible values are [0, 1, 2, -1, -2]. Since hardware
circuits operate over a finite field defined by the
modulus q = 3329, negative values are represented
using their modular equivalents: -1 becomes 3328
and -2 becomes 3327. This mapping ensures all
coefficients remain in the range [0, q-1].

STAGE 0

(s , s)0

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5 STAGE 6 STAGE 7

128 (s , s)1 129 (s , s)2 130 (s , s)125 253 (s , s)126 254 (s , s)127 255

Load input Butterfly operation Store output

address address

data

data

start
trigger

USB_data

USB_clock
NTT_clock

NTT_trigger

USB_R/W

USB_address
NTT accelator
for ML-KEM

NTT
register

USB
interface

ChipWhisperer Target
implementation

Host PC Oscilloscope

TARGET IMPLEMENTATION

Fig. 3: Measurement setup overview

Fig. 2: Modified NTT implementation

Fig. 1: Overview of general NTT operation

ChipWhisperer CW305 board

Artix-7 FPGA Target

Shunt measurement

Trigger

ChipWhisperer-Lite

PicoScope 5444D Oscilloscope

Data communication
between Host PC
and target FPGA

1
1,2 1,2 1,2

2

IACR Conference on Cryptographic Hardware and Embedded Systems, CHES 2025

Table 1: Parameter Sets for ML-KEM

Algorithm n q k η1 η2 du dυ

ML-KEM-512 256 3329 2 3 2 10 4

ML-KEM-768 256 3329 3 2 2 10 4

ML-KEM-1024 256 3329 4 2 2 11 5

Algorithm 1 Secret Key Generation for ML-KEM

Output: Secret key sk ∈ B12·k·n/8

1: d ← B32

2: (ρ, σ) ← G(d)
3: N ← 0
4: for i = 0 to k − 1 do � Sample s ∈ Rk

q from Bη1

5: s[i] ← CBDη1
(PRF(σ,N))

6: N ← N + 1
7: end for
8: ŝ ← NTT(s)
9: sk ← Encode12(ŝ mod q) � sk ← s

10: return sk

¸¨¨

[1]

[2]

