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Comparison of speed and area of:

• Our current work* for different 
parameter set configurations

• [HOK+18], either for the decapsulation 
module (.D) or for a set of modules to 
have comparable functionality

• Our estimates for our planned next steps, 
using a folded Keccak implementation, 
for 2 and 4 folds

Why FrodoKEM?

• When quantum computers become available, Shor's Algorithm will break 
conventional public key cryptography we have been using

• FrodoKEM is a Post-Quantum Cryptography (PQC) algorithm to establish a 
shared secret [1]

o Based on the unstructured lattice problem, which is generally considered to have 
a higher security margin than structured lattice

o Not selected as standard by NIST, but this was not due to security problems [2], 
yet recommended by Germany [3], France [4], Netherlands [5], Turkey [6], etc.

Our existing implementation*

• A single module that can carry out any FrodoKEM
algorithm (key generation, encapsulation, 
decapsulation) with any parameter set (640, 976, 
1344), one operation at a time

• Our benchmark is [HOK+18]:

o They provide 6 different modules each that carries out 
one specific operation

o Our module is overall 14% smaller and 15x faster (than 
their largest module)

o Our module is more flexible, as we can change operation 
and parameter set at run time
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Key Encapsulation Mechanism (KEM)

Our module's overall architecture

Comparison of [HOK+18] and our current work*

• We use less area overall

• Yet our Keccak module is much bigger

This is because our existing module does not use folding, 
and it executes a permutation per clock cycle

n-folded Keccak implementation allows us to need only 
1/n of the update logic, at the cost of being n times 
slower (needs n clock cycles to complete)

A folded implementation updates 
only a fragment of the state and 
shifts it every clock cycle

Comparison of existing results with estimates 
if we add folding to Keccak


