
References
[1] https://frodokem.org/files/FrodoKEM_standard_proposal_20241205.pdf
[2] https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf 
[3] https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=9 
[4] https://cyber.gouv.fr/sites/default/files/2022/04/anssi-avis-migration-vers-la-cryptographie-post-quantique.pdf 
[5] https://www.ncsc.nl/binaries/ncsc/documenten/publicaties/2022/juli/guidelines-for-quantum-safe-transport-layer-encryption/guidelines-for-
quantum-safe-transport-layer-encryption/Guidelines_for_PQC_-_Kyber_archief.pdf
[6] en.bilgem.tubitak.gov.tr/en/on-the-negative-effects-of-quantum-computers-on-secure-communication-and-actions-to-be-taken/ 

Giuseppe Manzoni1, Aydın Aysu2 and Elif Bilge Kavun3
1 Barkhausen Institut, Dresden, Germany giuseppe.manzoni@barkhauseninstitut.org
2 North Carolina State University, Raleigh, NC, USA aaysu@ncsu.edu
3 Barkhausen Institut & TU Dresden, Dresden, Germany elif.kavun@barkhauseninstitut.org

Comparison of speed and area of:

• Our current work* for different 
parameter set configurations

• [HOK+18], either for the decapsulation 
module (.D) or for a set of modules to 
have comparable functionality

• Our estimates for our planned next steps, 
using a folded Keccak implementation, 
for 2 and 4 folds

Why FrodoKEM?

• When quantum computers become available, Shor's Algorithm will break 
conventional public key cryptography we have been using

• FrodoKEM is a Post-Quantum Cryptography (PQC) algorithm to establish a 
shared secret [1]

o Based on the unstructured lattice problem, which is generally considered to have 
a higher security margin than structured lattice

o Not selected as standard by NIST, but this was not due to security problems [2], 
yet recommended by Germany [3], France [4], Netherlands [5], Turkey [6], etc.

Our existing implementation*

• A single module that can carry out any FrodoKEM
algorithm (key generation, encapsulation, 
decapsulation) with any parameter set (640, 976, 
1344), one operation at a time

• Our benchmark is [HOK+18]:

o They provide 6 different modules each that carries out 
one specific operation

o Our module is overall 14% smaller and 15x faster (than 
their largest module)

o Our module is more flexible, as we can change operation 
and parameter set at run time

This work is supported 
in part by

Project No. 543352068 University Program.

[HOK+18] 'Standard Lattice-Based Key Encapsulation on Embedded Devices' by James Howe, 
Tobias Oder, Markus Krausz, and Tim Güneysu. Published in TCHES 2018.

* Our existing work has been already presented at LightSEC 2025 and will be soon published as 
'An Optimized FrodoKEM Implementation on Reconfigurable Hardware' by Springer.
(Authors: Giuseppe Manzoni, Shekoufeh Neisarian and Elif Bilge Kavun)

and by theand by

Award No. 
2350142

Key Encapsulation Mechanism (KEM)

Our module's overall architecture

Comparison of [HOK+18] and our current work*

• We use less area overall

• Yet our Keccak module is much bigger

This is because our existing module does not use folding, 
and it executes a permutation per clock cycle

n-folded Keccak implementation allows us to need only 
1/n of the update logic, at the cost of being n times 
slower (needs n clock cycles to complete)

A folded implementation updates 
only a fragment of the state and 
shifts it every clock cycle

Comparison of existing results with estimates 
if we add folding to Keccak


