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Aim:The FHEMale framework enables privacypreserving machine learning (ML) on both edge and cloud environments using Fully
Homomorphic Encryption (FHE). It addresses the privacy challenges of edge ML, where resource-constrained devices process sensitive

data, and cloud ML, where data 1s outsourced to honest-but-curious servers. By performing computations on encrypted data, FHEMalLe ensures
confidentiality while supporting scalable ML on diverse platforms. [m == — e e ——— = — -
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Motivation

> Edge and Cloud Synergy: Edge ML reduces latency and bandwidth needs, while cloud
ML supports large-scale data processing. Both require robust privacy measures.

Time (min)

» Privacy Challenges: Edge devices face physical capture risks, and cloud servers are
vulnerable to data breaches in honest-but-curious models.

» FHE Trade-offs: CKKS excels in approximate arithmetic for neural networks (NNs)
but struggles with exact operations (e.g., comparisons in KNN, SVM). TFHE supports
bit-level logic but 1s computationally intensive.
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Results and discussions
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» Cloud Performance: On an HP Z240 (Intel Xeon, 64 GB RAM), CKKS achieves faster
KNN for small datasets (248s vs. 780s for TFHE, 4 samples) but slows for larger datasets
(7182s vs. 3768s, 15 samples).
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> Edge Performance: Distributed processing on 11 Raspberry P1 nodes reduces KNN time _ADD 1+y|
(37 min), SVM (4.15 min), and LR (7.82 min) using OpenFHE. E*ﬂ)
ne

» Memory Usage: CKKS requires 107 MB per element, limiting edge use;TFHE uses

0.064 MB, 1deal for edge.
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Fig. 3: Distributed Framework.

FHEMal.e evaluates ML models in plaintext to

select CKKS or TFHE based on required
operators and platform (edge or

cloud). Key components include:

» Library Selection: CKKS for SIMD-based
operations (e.g., matrix multiplications in NNs)
in cloud environments; TFHE for exact
comparisons (e.g., KNN, SVM) on edge
devices.

» Distributed processing for edge (Raspberry Pi
clusters) and cloud (highresource servers) to
optimize performance.

> Distributed Processing: Edge nodes compute
partial decision functions (PDFs), aggregated by
a master node (Nodel). Cloud servers handle
largescale encrypted computations.

> Encrypted Operations: FHE circuits (e.g.,
FHE Adder, FHE Mux) support secure dot
products and label predictions.

» Novel encrypted approximate division algorithm
for efficient sigmoid computation in logistic
regression (LR).

» Evaluation and minimization of computational
overhead introduced by encrypted data
operations with distributed and concurrent
computing on the edge devices network 1s also
explored.

Future Directions

» Optimize FHE circuits for additional ML

algorithms (e.g., Decision Trees).

> Scale cloud and edge clusters for larger

datasets and complex models.

» Develop hybrid CKKS-TFHE approaches for

balanced performance.

> Explore energy-efficient FHE for low-power

edge devices.
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