pradeepkumarreddy.bukka@gmail.com, sameeksha.goyal.810@gmail.com, ruchikasingh758(@gmail.com, cayantika@gmail.com

Indian Institute of Technology, Kharagpur, India-721302

FHEMalLe: Framework for Homomorphic Encrypted Machine Learning
B. Pradeep Kumar Reddy',Sameeksha Goyal? , Ruchika Meel’- Ayantika Chatterjee*

Aim:The FHEMale framework enables privacypreserving machine learning (ML) on both edge and cloud environments using Fully
Homomorphic Encryption (FHE). It addresses the privacy challenges of edge ML, where resource-constrained devices process sensitive

data, and cloud ML, where data 1s outsourced to honest-but-curious servers. By performing computations on encrypted data, FHEMalLe ensures
confidentiality while supporting scalable ML on diverse platforms. [m == — e e ——— = — -

i
L
—

120 1 —e— OpenFHE TFHE -
—-m- OpenFHE CKKS ‘

Motivation

> Edge and Cloud Synergy: Edge ML reduces latency and bandwidth needs, while cloud
ML supports large-scale data processing. Both require robust privacy measures.

Time (min)

» Privacy Challenges: Edge devices face physical capture risks, and cloud servers are
vulnerable to data breaches in honest-but-curious models.

» FHE Trade-offs: CKKS excels in approximate arithmetic for neural networks (NNs)
but struggles with exact operations (e.g., comparisons in KNN, SVM). TFHE supports
bit-level logic but 1s computationally intensive.

T T T T T T T
9 10 11 12 13 14 15
Training samples

Fig. 2: CKKS vs TFHE KNN computaion time on
cloud

Why KNN is Not Suitable in
Encrypted Domain?

Encrypted result

£ Input model Platform=Edge | .
> " _Raspberry pi cluste

Decision block
Desired for
User accuracy} library
Platform selection
(ServerIEdger
0 > Server/Encrypted

Edge Machine
Learnin

» KNN requires exact comparisons and

sorting for distance-based

classification, which are challenging

in FHE.

>3
Encrypted result Encrypted _MaChlne
_ learning

Platform=Server l

» CKKS enables homomorphic distance

l Approximate
operators one

Implement model by one
in plain text with
exact computation)[

Implement
with CKKS

computations for KNN efficiently,

Implement Approximate model secure and efficient neighbor selection

with TFHE to TFHE

(sorting of encrypted data) scales

I poorly remains a critical challenge. ,
Ciiont Siaw Why CKKS is Suitable for Neural Networks?
= 1§ CientSide | Ene data e CKKS | 1S 1dea.1 for NNS due to its sqpport for
Node_1: Encrypted nc_Data approximate arithmetic and SI operations:
S slatn data(w;,x; etc) n n groups . . :
e aogs L] — — * Vectorized Operations: CKKS efficiently

MNode_ 1: MNode mn:

Enc_data handles matrix multiplications and dot products,

Compute Partial Compute Partial

DF (FIrF) D (FIE)

Compute Partial
DF (P F)

POP~, | PDF , Node?2 Noden : core to NN layers (e.g., linear, attention heads).
Compute DF, Nodel: Compute :Compute * * = s« Compute Partial
”\\ Partial DF(PDF) | o ial DF(PDF) “P°" | DF(PDF) SIMD Packing: Enables parallel evaluation of
PDF DE—~ multiple slots, improving throughput for high-
Client Side Nodel: dimensional embeddings.
Decrypt € Compute DF and * Tolerable Approximations: NNs tolerate minor
prediction_Result predict result . : : : : : :
T — o P inaccuracies 1n operations like ReLU or sigmoid,
Fiacyel cti t . .
reenon et unlike KNNs need for exact comparisons.

* Cloud Efficiency: CKKS achieves faster NN

Fig 5: Encrypted Distributed SVM Framework. , ,
processing on high-resource servers.

Fig 4: Encrypted Distributed LR Framework.

Results and discussions

f{x)=10y/1+y|

» Cloud Performance: On an HP Z240 (Intel Xeon, 64 GB RAM), CKKS achieves faster
KNN for small datasets (248s vs. 780s for TFHE, 4 samples) but slows for larger datasets
(7182s vs. 3768s, 15 samples).

FHE

> Edge Performance: Distributed processing on 11 Raspberry P1 nodes reduces KNN time _ADD 1+y|
(37 min), SVM (4.15 min), and LR (7.82 min) using OpenFHE. E*ﬂ)
ne

» Memory Usage: CKKS requires 107 MB per element, limiting edge use;TFHE uses

0.064 MB, 1deal for edge.
12 8
1 N = DF <« assign value to numerator | g Distributed Encrypted KNN using TFHE ENUFHE ! Distributed Encrypted SVM using TFHE EN"FHE

. OpenFHE python OpenFHE python
2 D =1+ |DF| < assign value to denomerator 10 - OpenFHE c++ 71 OpenFHE c++
PO2 = [1,2,4,8, 16, 32,64, 128, 512,1024,...]
EPO2 =
0 # encrypted power of 2 array

Fig 6: Fastsigmoid with Encrypted Gates.

'
I M

for 1 in [1 %X len(EPO2)]

Time (hr)

Time (hr)
w

rsft = 1] + ¢
rsft = N = FHE_Mux(sel,
Shifts if D > EPO2[i] or if 0 0-
D < EPO2][1] but closer than EPO2 [i —1] . . ‘ . : : : '
16 ENDFOR 1 2 3 4 5 6 7 8
No. of Edge Nodes
Fig. 7: Encrypted KNN Prediction Time

No. of Edge Nodes

Algo 1: Encrypted Approximate Division Fig. 8: Encrypted SVM Prediction Time

12

| Distributed Encrypted LR using TFHE [5_g°C

Table 1: Ckks vs TFHE Time (single prediction) and Memory per element (one element 16 bit) on cloud

10 == OpenFHE c++
OpenFHE OpenFHE OpenFHE OpenFHE i
ML Model CKKS Time TFHE Time | TFHE Memory | CKKS Memory :
(sec) (sec) (MB) Q\%03)) 3 \
KNN 7182 3768 0.064 107 2
_ 0] = —
LR 17 650

=7}

Time (hr)

0.064 107 2 4 & 8 10
No. of Edge Nodes

Fig. 9: Encrypted LR Prediction Time

Methodology

Client Side Edge Nodes(ENs)

Sensors{Data generation Partial Prediction

:

i

i

i

i

i

i

+Encryption) : ‘

------------------------- I
: : | -.’:P"'? %%
X i

e

- N
. Enc_data t"@ Partial Prediction
.+ Cloud key

D o —

.?'i
Enc data }'

(Distributes Enc_data+ St '
Partial Prediction)

Fig. 3: Distributed Framework.

FHEMal.e evaluates ML models in plaintext to

select CKKS or TFHE based on required
operators and platform (edge or

cloud). Key components include:

» Library Selection: CKKS for SIMD-based
operations (e.g., matrix multiplications in NNs)
in cloud environments; TFHE for exact
comparisons (e.g., KNN, SVM) on edge
devices.

» Distributed processing for edge (Raspberry Pi
clusters) and cloud (highresource servers) to
optimize performance.

> Distributed Processing: Edge nodes compute
partial decision functions (PDFs), aggregated by
a master node (Nodel). Cloud servers handle
largescale encrypted computations.

> Encrypted Operations: FHE circuits (e.g.,
FHE Adder, FHE Mux) support secure dot
products and label predictions.

» Novel encrypted approximate division algorithm
for efficient sigmoid computation in logistic
regression (LR).

» Evaluation and minimization of computational
overhead introduced by encrypted data
operations with distributed and concurrent
computing on the edge devices network 1s also
explored.

Future Directions

» Optimize FHE circuits for additional ML

algorithms (e.g., Decision Trees).

> Scale cloud and edge clusters for larger

datasets and complex models.

» Develop hybrid CKKS-TFHE approaches for

balanced performance.

> Explore energy-efficient FHE for low-power

edge devices.

References

1. Chatterjee, A., & Sengupta, 1. (2015).
Translating algorithms to handle fully
homomorphic encrypted data on the
cloud. /IEEE Transactions on Cloud
Computing, 6(1), 287-300.

2. Reddy, B. P. K., Mecel, R., & Chatterjee, A.
(2024). Encrypted KNN Implementation on
Distributed Edge Device Network. IJACR
Cryptol. ePrint Arch., 2024, 648.

3. Agrawal, R., & Joshi, A. (2023). On architecting
fully homomorphic encryption-based computing
systems. Springer International Publishing.

4. Pradeep Kumar Reddy, B., & Chatterjee, A.
(2025). SMLaaS: Secure Machine Learning as a
Service Ensuring Data and Model Parameter
Privacy. Security and Privacy, 8§(4), €70047.

Connect With Us

mailto:pradeepkumarreddy.bukka@gmail.com
mailto:sameeksha.goyal.810@gmail.com
mailto:ruchikasingh758@gmail.com
mailto:cayantika@gmail.com

	Slide 1

