
◼ Deep Neural Network (DNN) inference on edge devices
exposes AI models to side-channel threats.

◼ Beyond the well-studied leakage of inputs or parameters,
we identify output-stage leakage as a critical yet
underexplored vulnerability.

◼ In this work, we:
• Use our self-developed CrackNuts platform;
• Recover NN predictions on STM32F4 via Simple Power

Analysis (SPA);
• Introduce a shuffling-based countermeasure

leveraging the Fisher–Yates algorithm.
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Extract Output via SPA

◼ We use CrackNuts, an open-source side-channel security
evaluation platform developed by our lab.

The platform consists of two modular boards:
• Cracker: provides power-based side-channel acquisition

and control.
• Nuts: a swappable MCU board (STM32F407VG in this study) Figure 3. Pseudocode of neural-network inference on the MCU. 

Figure 4. The CrackNuts side-channel evaluation platform.

◼ The red-highlighted region of the waveform indicates the final update of the
maximum value during the comparison operation (the attack point);

◼ The blue-highlighted waveform segments correspond to earlier updates that
are not relevant to the attack.

Experimental Setup

Results

Figure 5. Power traces of neural-network output classification.
(a) Input image;  (b) Without countermeasure;  (c) With shuffling-based countermeasure. 
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Future Directions

Figure 1. Illustration of the attack setup and model.
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◼ Perform reverse engineering of DNN structures via side-
channel techniques using CrackNuts.

◼ Evaluate hardware vulnerabilities of DNNs via fault-
injection experiments using CrackNuts.

The neural-network output classification process induces distinct
power patterns due to conditional branching behavior:

Fisher–Yates–Based Shuffling Countermeasure
◼ The output indices are randomly permuted before the argmax operation, without 

affecting the correctness of the final result.
◼ Randomization disrupts the correlation between execution order and output values, 

thereby obfuscating data-dependent power variations.

◼ Model：
• a DNN trained on the MNIST dataset, implementing a 10-

class handwritten-digit recognition task generated by the X-
CUBE-AI tool.

◼ Attack Target: The argmax function identifies the index of the highest-probability output.

Figure 2. Output Extraction via SPA.


