Cracking the Al Nut: From Output Extraction to Shuffling Countermeasure

A Side-Channel Evaluation of DNNs Using the CrackNuts Platform

A Siae-Cha Le W

Le Wu¹, Liji Wu¹*, Xiangming Zhang¹, Yuyang Pan², and Jian Wu³

¹ School of Integrated Circuits, Tsinghua University;

² Beijing UnionPay Card Technology Co., Ltd; ³ Beijing Pairui Micro Technology Co., Ltd.

wul22@mails.tsinghua.edu.cn; {lijiwu, zhxm}@tsinghua.edu.cn; panyuyang@qq.com; wujian@ahcx.cloud

TSING TO THE TOTAL TO THE TOTAL TOTA

Motivation

- Deep Neural Network (DNN) inference on edge devices exposes Al models to side-channel threats.
- Beyond the well-studied leakage of inputs or parameters, we **identify output-stage leakage** as a critical yet underexplored vulnerability.
- In this work, we:
 - Use our self-developed CrackNuts platform;
 - Recover NN predictions on STM32F4 via Simple Power Analysis (SPA);
 - Introduce a shuffling-based countermeasure leveraging the Fisher-Yates algorithm.

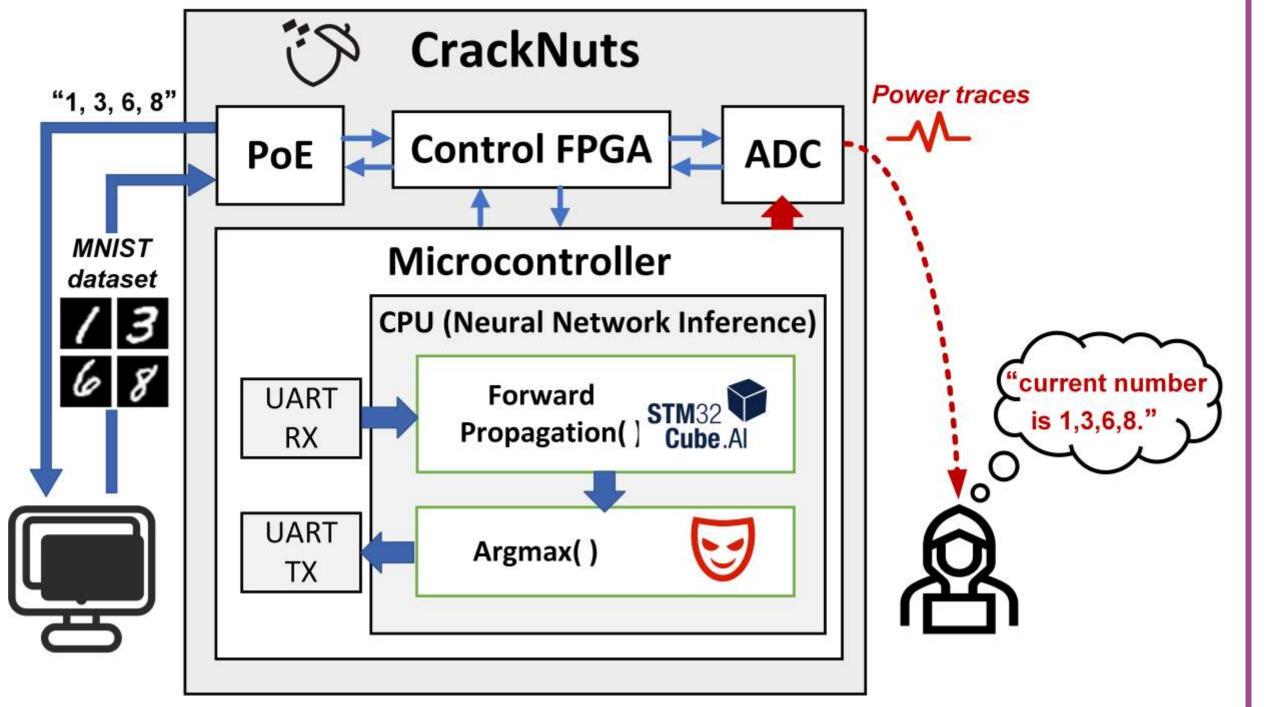


Figure 1. Illustration of the attack setup and model.

Experimental Setup

■ We use CrackNuts, an open-source side-channel security evaluation platform developed by our lab.

The platform consists of two modular boards:

- Cracker: provides power-based side-channel acquisition and control.
- Nuts: a swappable MCU board (STM32F407VG in this study)
- Model:
- a DNN trained on the MNIST dataset, implementing a 10class handwritten-digit recognition task generated by the X-CUBE-AI tool.

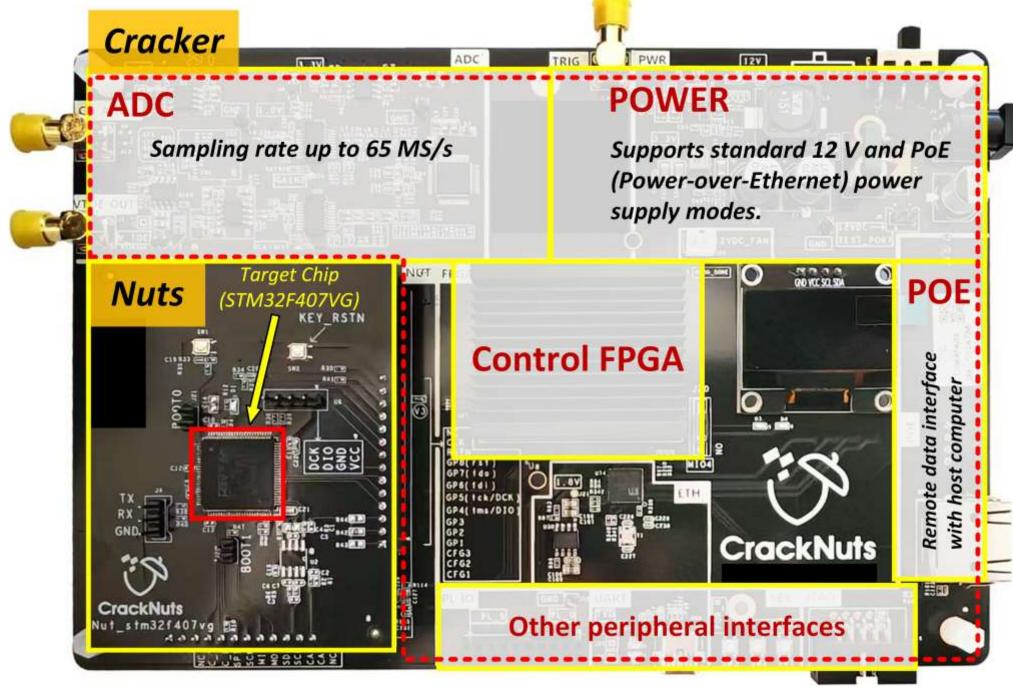


Figure 4. The CrackNuts side-channel evaluation platform.

Future Directions

- Perform reverse engineering of DNN structures via sidechannel techniques using CrackNuts.
- Evaluate hardware vulnerabilities of DNNs via fault-injection experiments using CrackNuts.

Acknowledgements and References

Methodology

Extract Output via SPA

■ Attack Target: The *argmax* function identifies the index of the highest-probability output.

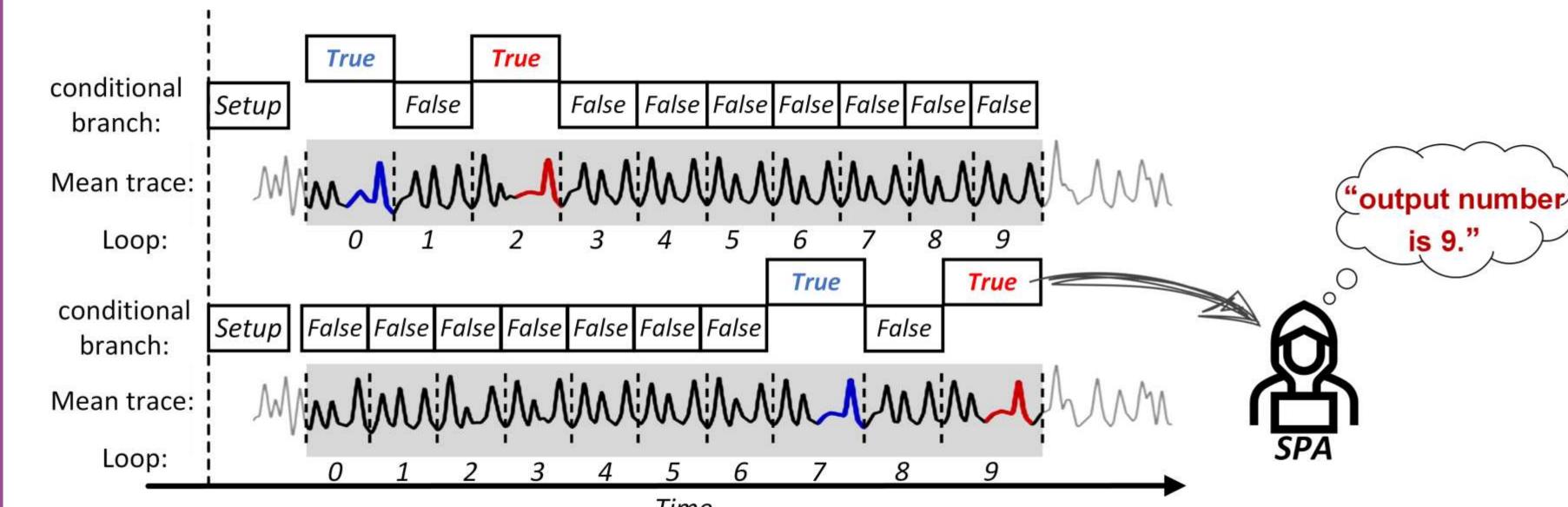
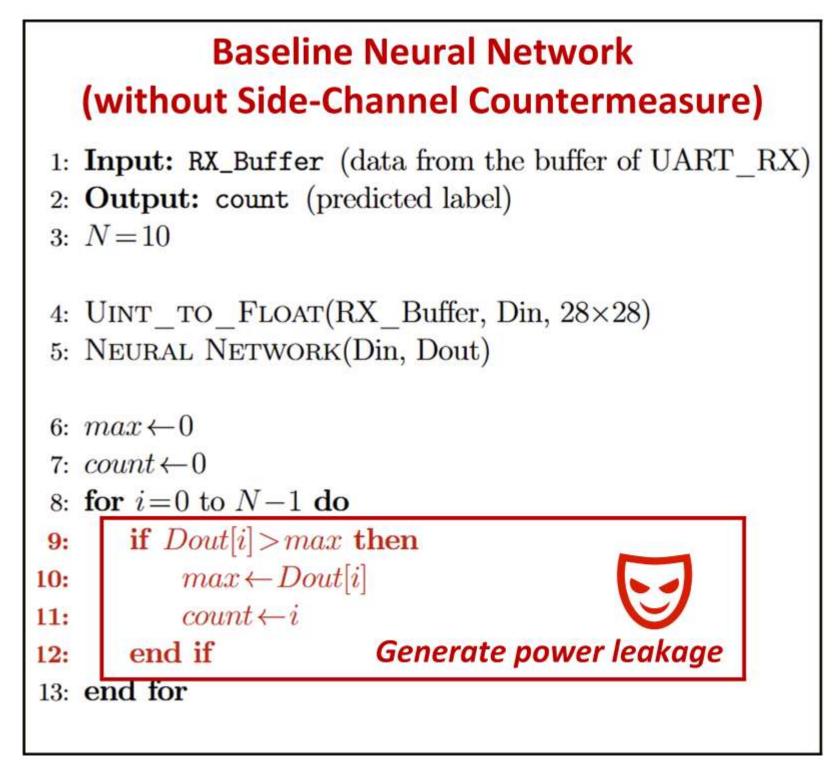
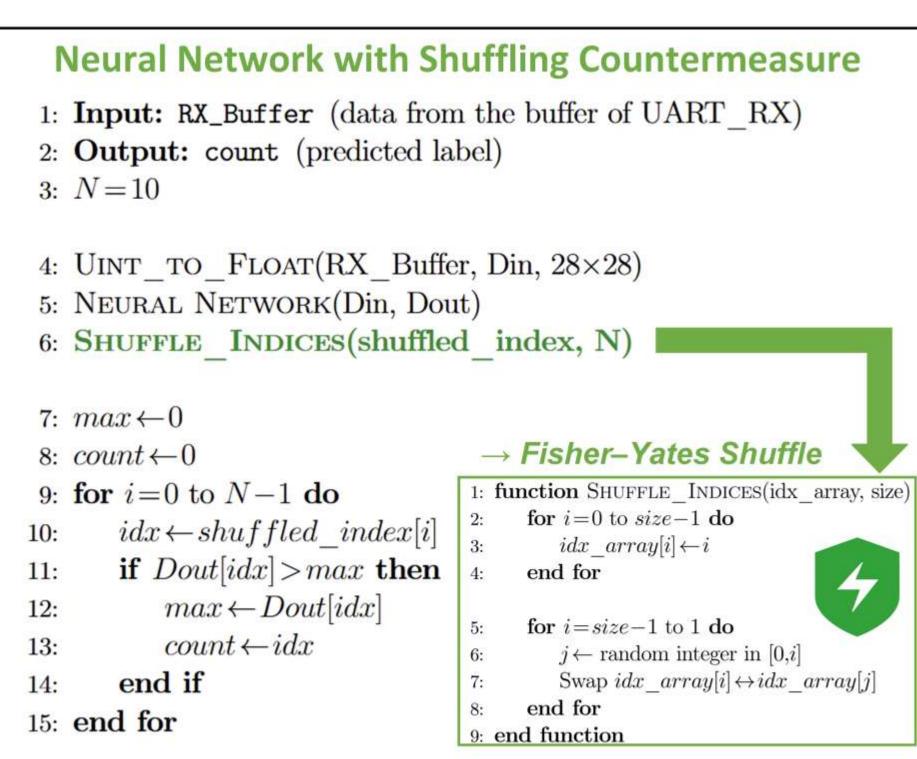


Figure 2. Output Extraction via SPA.

Fisher-Yates-Based Shuffling Countermeasure

- The output indices are randomly permuted before the argmax operation, without affecting the correctness of the final result.
- Randomization disrupts the correlation between execution order and output values, thereby obfuscating data-dependent power variations.





Results

Figure 3. Pseudocode of neural-network inference on the MCU.

The neural-network output classification process induces distinct power patterns due to conditional branching behavior:

- The red-highlighted region of the waveform indicates the final update of the maximum value during the comparison operation (the attack point);
- The blue-highlighted waveform segments correspond to earlier updates that are not relevant to the attack.

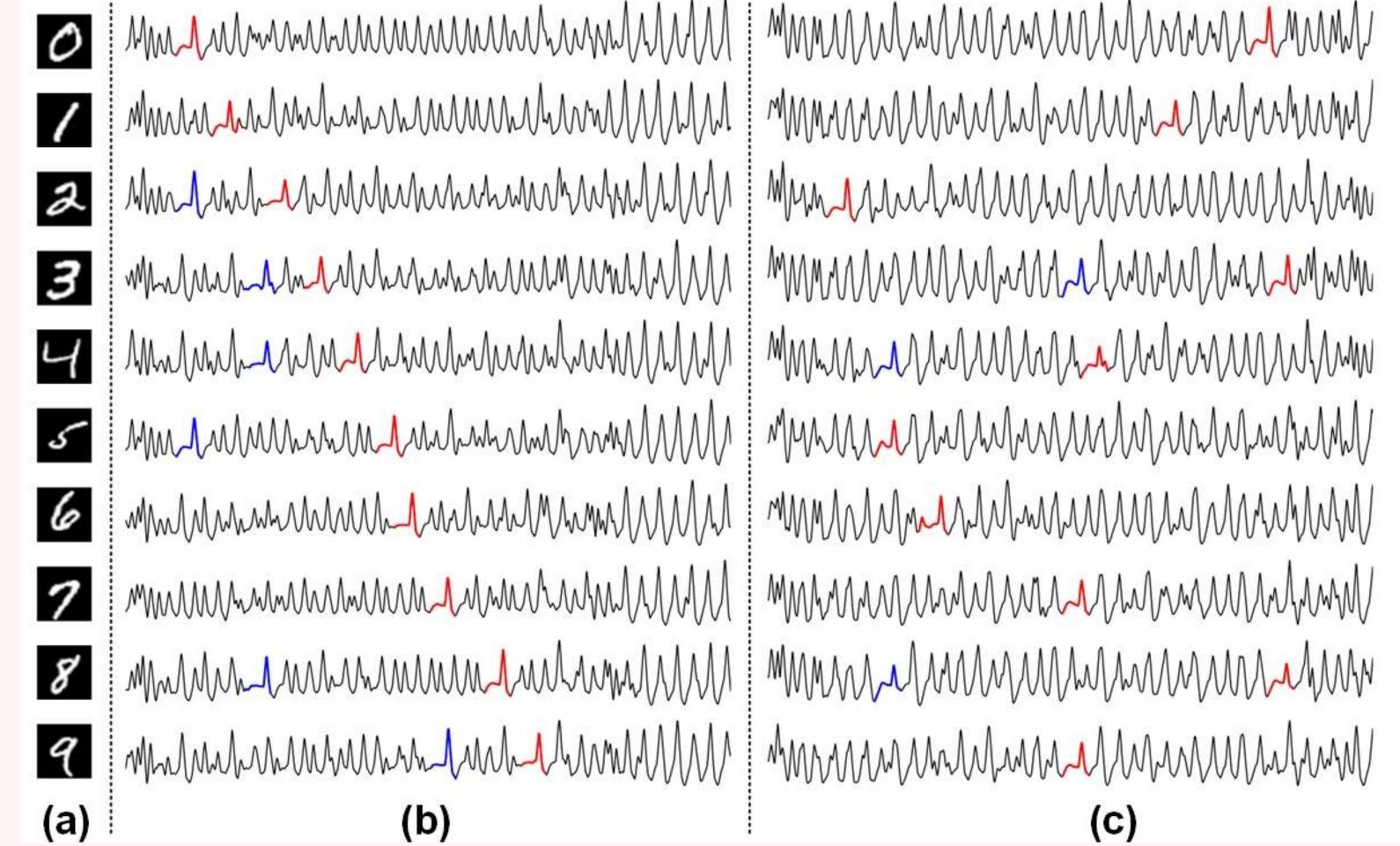


Figure 5. Power traces of neural-network output classification.

(a) Input image; (b) Without countermeasure; (c) With shuffling-based countermeasure.

[1] Méndez Real M, et al., "Physical side-channel attacks on embedded neural networks: A survey". Applied Sciences, 2021, 11(15): 6790.

[2] Maji S, et al., "Leaky nets: Recovering embedded neural network models ···". IEEE Internet of Things Journal, 2021, 8(15): 12079-12092.
[3] Puškáč L, et al., "Make Shuffling Great Again ···". IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 7(33): 1959-1971.

[4] Brosch M, et al., "Counteract side-channel analysis of neural networks by shuffling". DATE 2022. IEEE, 2022: 1305-1310.

