
High-Order and Cortex-M4 First-Order
Implementations of Masked FrodoKEM

François Gérard1 and Morgane Guerreau2*

1University of Luxembourg, 2PQShield

High-Order and Cortex-M4 First-Order
Implementations of Masked FrodoKEM

François Gérard1 and Morgane Guerreau2*

1University of Luxembourg, 2PQShield

Introduction

The recent standardization of post-quantum schemes following the NIST
standardization process has shown that the field is maturing and calls for
further evolutions on the practical side. In particular, side-channel secure
implementations have to be developed on various platforms. Here, we will
focus on the masking countermeasure for FrodoKEM, a KEM recom-
mended by European agencies ANSSI and BSI that is a plain LWE sibling
of the standard ML-KEM. While the masking techniques required to pro-
tect different parts of the scheme have already appeared in the literature,
we make the first step toward securely deploying the scheme by propos-
ing a high-order generic C implementation. Furthermore, we specialize the
code at order 1 for Cortex-M4, by rewriting in ARM assembly the basic
masking gadgets used by the generic implementation, in order to thwart
(micro-)architectural leakage. Our work is validated by performing TVLA
on a ChipWhisperer-Lite.

FrodoKEM Decaps

Input: c = c1‖c2‖salt, sk = s‖seedA‖b‖ST
Output: ss
B′← Unpack(c1, n̄, n)
C← Unpack(c2, n̄, n̄)
M← C−B′S
u′← Decode(M)
seedSE ′‖k′← SHAKE(u′‖salt)
S′,E′,E′′← SampleMatrix(seedSE ′)
A← Gen(seedA)
B′′← S′A + E′

B← Unpack(b, n, n̄)
V← S′B + E′′

C′← V + Encode(u′)
k̄ ← k′ if B′‖C = B′′‖C′ else k̄ ← s
ss← SHAKE(c1‖c2‖salt‖k̄)
return ss

What to mask and how?

• Matrix operations: Use the fact that AS can be com-
puted as AS0,AS1, . . . ,ASn.

• Hashing: Required for the re-encryption through the
FO transform. Out of scope of this work

• Encoding and decoding: Encode maps n̄2 B-bit sub-
strings to values in Zq by multiplying them by q/2B.
Decode is the inverse. Since q is a power of two, these
are shifts, and we use A2B/B2A conversions to com-
pute them.

• Gaussian sampling: Go through a cumulative distribu-
tion table. Most expensive operation in masked form.

• Comparison: To verify if a is equal to b, we compute
a− b and perform a masked zero test.

Micro-architectural Leakage

While implementing a theoretically validated masking scheme is a good first step toward a
secure implementation, it is known that micro-architectural effects can introduce additional
sources of leakage by, for example, manipulating shares on a common resource (register,
bus). It is thus required to work at low-level to aim at limiting those effects.

ldrh rx0, [px], #2

ldrh r, [pool]

ldrh rx1, [px], #2

ldrh rx0, [px], #2

ldrh r, [pool]

ldrh rx1, [px], #2

strh t1, [pool]

ldrh rx0, [px], #2

ldrh r, [pool]

ldrh rx1, [px], #2

eor t2, t2, t2

strh t1, [pool]

Overhead on Cortex-M4

C ASM ASMh

SecAND 49 51 68 (+39%)
SecADD 206 149 248 (+20%)

BooleanToArithmetic 33 47 54 (+64%)
ArithmeticToBoolean 154 125 222 (+44%)

SecZeroTest 144 126 223 (+55%)
Tab. 1: Number of cycles on Cortex-M4

Manually hardening the gadgets
induces a performance overhead
ranging from +20% to +64%.
This performance loss remains
better than what can be ob-
tained with automated tools.

Experimental validation

TVLA for naive (resp. hardened) ASM versions using 5,000 (resp. 100,000) traces.

Fig. 1: t-tests for SecADD (naive) Fig. 2: t-tests for SecADD (hardened)

Fig. 3: t-tests for SecZeroTest (naive) Fig. 4: t-tests for SecZeroTest (hardened)

Performances on x64

Order 1 2 3 4 5 6 7

Key encode 2 152 219 392 596 788 994
Key decode 4 76 113 234 368 483 602

Compare 408 6312 9370 19,358 31,125 40,369 49,756
Sampler 9647 94,967 144,200 223,058 318,535 422,430 531,283

Tab. 2: Benchmarks on x64 of the large gadgets used in FrodoKEM (in kilocycles)

Order 1 2 3 4 5 6 7

Frodo-640 57,395 293,703 498,200 809,345 1,138,708 1,523,870 2,010,644
Frodo-976 93,498 446,945 781,157 1,258,737 1,844,603 2,490,802 3,143,712
Frodo-1344 117,860 522,497 903,360 1,550,615 2,215,093 2,962,697 3,874,540

Tab. 3: Benchmarks on x64 of all versions of FrodoKEM (in kilocycles).

ePrint

ia.cr/2025/1065

Randomness usage

Order 1 2 3 4 5 6 7

Frodo-640 855 9388 18,632 31,628 47,673 66,720 88,816
Frodo-976 1113 12,524 24,861 42,336 63,884 89,434 119,058
Frodo-1344 1013 12,392 24,611 42,342 64,121 89,850 119,628

Tab. 4: Number of random 16-bit integers required during decaps (×1000)

Even if they have different parameters, Frodo-
1344 and Frodo-976 actually need roughly the
same amount of randomness because the CDT of
Frodo-1344 is smaller.

GitHub

fragerar/masked_Frodo

* Work done while the author was at CryptoNext Security


