
High Throughput GPU Implementation of HQC Key
Encapsulation Mechanism

Wai-Kong Lee, Ramachandra Achar, Mingxiang Chen, Wijden Elmetamri

Universiti Tunku Abdul Rahman, Carleton University, Institut Supérieur d’Informatique et

de Mathématiques de l’Université de Monastir

Introduction

The HQC (Hamming Quasi-Cyclic) [2] Key Encapsulation Mechanism (KEM) is a code-based cryptographic scheme designed to provide secure

communication in the era of quantum computing. It was selected as one of the NIST post-quantum standards in 2025. Although HQC was extensively

studied since its inception, most of the prior works focuses on its security aspects, the implementation aspects are less researched compared to its

lattice counterparts like Kyber [3]. This work focuses on the implementation of the HQC KEM using Graphics Processing Units (GPUs) to achieve high

throughput key encapsulation and decapsulation performance.

Polynomial multiplication in GF(2) is the most time-consuming operation in HQC, which is also used frequently in encapsulation and decapsulation. 

Based on our profiling experiments on the reference implementation, it takes up ≈ 90% of the encapsulation and decapsulation time. The HQC 

authors proposed to use the recursive Karatsuba algorithm, which is not suitable for parallel implementation on a GPU. This is because recursive 

function calls are commonly implemented using “dynamic parallelism” feature in a GPU, which is costly for many levels of recursion.

Proposed Solutions

In this work, we proposed a parallel and iterative version of Karatsuba algorithm to remove the recursive function call. We also heavily optimized the 

kernel by utilizing various cache memories available in a GPU and evaluated its performance with different levels of recursion. We found that although 

Karatsuba algorithm can reduce the overall computational complexity, the more recursion level reduces its parallelism, leading to lesser gain in 

performance.

Diagrams Preliminary Experimental Results

Our implementation (HQC-128) utilizes multiple blocks concurrently; 

each block utilizes multiple threads to compute one polynomial 

multiplication.

Referring to Table 1, on an RTX4060 Ti GPU, Karatsuba with one level 

recursion achieved 2.02× speed-up compared with schoolbook 

method, at batch size 65536. The best throughput achieved is 42695 

multiplications per second with two levels of Karatsuba recursion.

However, on an A100 GPU, Karatsuba two levels is actually slower 

than one level. This shows that more recursion in Karatsuba algorithm 

does not always yield better results on a GPU.

Table: Performance of the proposed GPU-based polynomial multiplication in GF(2)

Variants
Throughput (Mult/s)

Batch Size
Speed-up

(RTX4060 Ti)A100 RTX4060 Ti

Schoolbook

13542

22979

29034

15220

16557

17785

256

4096

65536

1×
1×
1×

Karatsuba
-1-level

30815

45291

57445

29679

33191

35946

256

4096

65536

1.95×
2.00×
2.02×

Karatsuba
-2-level

30815

58503

45962

35213

41850

42695

256

4096

65536

2.18×
2.53×
2.40×

► 64-bit × 64-bit carry-less multiplication: Unlike conventional 

polynomial multiplication, HQC uses carry-less multiplication. The 

HQC authors utilized a state-of-the-art version [1] which is faster 

than a bit-by-bit computation, but is this optimal for GPU 

architectures?

► Tensor cores: Can we formulate the carry-less multiplication as a 

matrix-matrix multiplication, so as to utilize tensor cores for a 

higher performance?

► Other performance bottlenecks: Including the random sample 

generation (SHAKE). The complete GPU-accelerated HQC KEM 

will be open-source it to the public in near future.

Contacts

► Wai-Kong Lee

Universiti Tunku Abdul Rahman
wklee@utar.edu.my

► Ramachandra Achar 

Carleton University 

achar@doe.carleton.ca

► Mingxiang Chen

Carleton University
EddieChen@cmail.carleton.ca

► Wijden Elmetamri
Institut Supérieur d’Informatique et de 

Mathématiques de l’Université de 

Monastir 

wijdene.mootamri66@gmail.com

…

Karatsuba Two-level Decomposition on GPU

Second level decomposition

Finish

…

…

Start: Each block processes one polynomial

Karatsuba one-level decomposition 

HH part 
(N)

LH part 
(N)

HH&LH part 
(N)

HL&LL part (N)

Process and combine results

…

Karatsuba One-level Decomposition on GPU

Start

Both parts

(N threads)

Process and combine results

Finish

Lower part 

(N threads)

Higher part

(N threads)

Calculate higher & lower part
…

Start: Lunch kernel

Schoolbook on GPU

Process schoolbook on 
each thread

Write results

Finish

…

On-going Explorations

mailto:wklee@utar.edu.my
mailto:achar@doe.carleton.ca
mailto:EddieChen@cmail.carleton.ca
mailto:wijdene.mootamri66@gmail.com

	Slide 1

