High Throughput GPU Implementation of HQC Key
Encapsulation Mechanism izl Carleton [0

Wai-Kong Lee, Ramachandra Achar, Mingxiang Chen, Wijden Elmetamri

University N

Universiti Tunku Abdul Rahman, Carleton University, Institut Supérieur d’Informatique et
de Mathématiques de I'Université de Monastir

Introduction

The HQC (Hamming Quasi-Cyclic) [2] Key Encapsulation Mechanism (KEM) is a code-based cryptographic scheme designed to provide secure
communication in the era of quantum computing. It was selected as one of the NIST post-quantum standards in 2025. Although HQC was extensively
studied since its inception, most of the prior works focuses on its security aspects, the implementation aspects are less researched compared to its
lattice counterparts like Kyber [3]. This work focuses on the implementation of the HQC KEM using Graphics Processing Units (GPUs) to achieve high
throughput key encapsulation and decapsulation performance.

Polynomial multiplication in GF(2) is the most time-consuming operation in HQC, which is also used frequently in encapsulation and decapsulation.
Based on our profiling experiments on the reference implementation, it takes up & 90% of the encapsulation and decapsulation time. The HQC
authors proposed to use the recursive Karatsuba algorithm, which is not suitable for parallel implementation on a GPU. This is because recursive
function calls are commonly implemented using “dynamic parallelism” feature in a GPU, which is costly for many levels of recursion.

Proposed Solutions

In this work, we proposed a parallel and iterative version of Karatsuba algorithm to remove the recursive function call. We also heavily optimized the
kernel by utilizing various cache memories available in a GPU and evaluated its performance with different levels of recursion. We found that although
Karatsuba algorithm can reduce the overall computational complexity, the more recursion level reduces its parallelism, leading to lesser gain in
performance.

Preliminary Experimental Results

Karatsuba One-level Decomposition on GPU Our implementation (HQC-128) utilizes multiple blocks concurrently;
each block utilizes multiple threads to compute one polynomial
I Start I multiplication.
3 » Referring to Table 1, on an RTX4060 Ti GPU, Karatsuba with one level
{ Calculate higher & lower part } D recursion achieved 2.02x speed-up compared with schoolbook
—— — D method, at batch size 65536. The best throughput achieved is 42695
Hishor oart] multiplications per second with two levels of Karatsuba recursion.
[Enere J owerpart Both parts However, on an A100 GPU, Karatsuba two levels is actually slower
(N threads) (N threads) (N threads) than one level. This shows that more recursion in Karatsuba algorithm
\] — v does not always yield better results on a GPU.
{ Process and combine results J Table: Performance of the proposed GPU-based polynomial multiplication in GF(2)
i Throughput (Mult/s) : Speed-up
Variants ——x700 RTX4060 Ti oateh Size | prx4060 Ti)
Finish 13542 15220 256 1%
Schoolbook | 22979 16557 4096 1%
Karatsuba Two-level Decomposition on GPU 29034 e 65536 s
Karatsuba 30815 29679 256 1.95%
[Start: Each block processes one polynomial -1-level 45291 33191 4096 2.00x
57445 35946 65536 2.02X%
[Karatsuba one-le\iel decomposition] E] Q K_azrﬁtesvuet?a 2gggg 2?;;8 4205966 g:;gz
45962 42695 65536 2.40X

Second level decomposition

[4 J
— s ——

HH part LH part HH&LH part
[(I\?)][(/5)][(N)IO]C][HL&LLpart(N)] ~ 64-bit X 64-bit carry-less multiplication: Unlike conventional
AW J L v polynomial multiplication, HQC uses carry-less multiplication. The
? Process and combine results } D U HQC authors utilized a state-of-the-art version [1] which is faster
than a bit-by-bit computation, but is this optimal for GPU

architectures?
Finish T .
= Tensor cores: Can we formulate the carry-less multiplication as a

matrix-matrix multiplication, so as to utilize tensor cores for a

Schoolbook on GPU higher performance?
= Other performance bottlenecks: Including the random sample

generation (SHAKE). The complete GPU-accelerated HQC KEM
will be open-source it to the public in near future.

{ Start: Lunch kernel

[Process schoolbook on

each thread ~ Wai-Kong Lee ~ Mingxiang Chen
Universiti Tunku Abdul Rahman Carleton University
wklee(@utar.edu.my EddieChen@cmail.carleton.ca
Write results » Ramachandra Achar ~ Wijden Elmetamri
S J Carleton University Institut Supérieur d’Informatique et de
) l . achar@doe.carleton.ca Mathématiques de I'Université de
Finish Monastir
S - wijdene.mootamri66@gmail .com

mailto:wklee@utar.edu.my
mailto:achar@doe.carleton.ca
mailto:EddieChen@cmail.carleton.ca
mailto:wijdene.mootamri66@gmail.com

	Slide 1

