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Introduction

The HQC (Hamming Quasi-Cyclic) [2] Key Encapsulation Mechanism (KEM) is a code-based cryptographic scheme designed to provide secure
communication in the era of quantum computing. It was selected as one of the NIST post-quantum standards in 2025. Although HQC was extensively
studied since its inception, most of the prior works focuses on its security aspects, the implementation aspects are less researched compared to its
lattice counterparts like Kyber [3]. This work focuses on the implementation of the HQC KEM using Graphics Processing Units (GPUs) to achieve high
throughput key encapsulation and decapsulation performance.

Polynomial multiplication in GF(2) is the most time-consuming operation in HQC, which is also used frequently in encapsulation and decapsulation.
Based on our profiling experiments on the reference implementation, it takes up & 90% of the encapsulation and decapsulation time. The HQC
authors proposed to use the recursive Karatsuba algorithm, which is not suitable for parallel implementation on a GPU. This is because recursive
function calls are commonly implemented using “dynamic parallelism” feature in a GPU, which is costly for many levels of recursion.

Proposed Solutions

In this work, we proposed a parallel and iterative version of Karatsuba algorithm to remove the recursive function call. We also heavily optimized the
kernel by utilizing various cache memories available in a GPU and evaluated its performance with different levels of recursion. We found that although
Karatsuba algorithm can reduce the overall computational complexity, the more recursion level reduces its parallelism, leading to lesser gain in
performance.

Preliminary Experimental Results

Karatsuba One-level Decomposition on GPU Our implementation (HQC-128) utilizes multiple blocks concurrently;
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I Start I multiplication.
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= Tensor cores: Can we formulate the carry-less multiplication as a

matrix-matrix multiplication, so as to utilize tensor cores for a

Schoolbook on GPU higher performance?
= Other performance bottlenecks: Including the random sample

generation (SHAKE). The complete GPU-accelerated HQC KEM
will be open-source it to the public in near future.
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